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Single-shot Instance Segmentation
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(majority of work done by my students: Zhi tian, Hao Chen, and Xinlong Wang)
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FCOS Detector

Tian, Zhi, et al. "FCOS: Fully convolutional one-stage object detection." Proc. Int. Conf.
Comp. Vis. 2019.
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Overview of FCOS
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Fig. 2. The network architecture of FCOS, where C3, C4, and C5 denote the feature maps of the backbone network and P3 to P7 are the feature
levels used for the final prediction. H x W is the height and width of feature maps. /s’ (s = 8, 16, ..., 128) is the down-sampling ratio of the feature
maps at the level to the input image. As an example, all the numbers are computed with an 800 x 1024 input.
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Performance

Method Backbone AP  APso AP»s | APs APu APL
Two-stage methods:
Faster R-CNN+++ [36] ResNet-101 349 557 374 156 387 509
Faster R-CNN w/ FPN [6] ResNet-101-FPN 36.2  59.1 39.0 182 390 482
Faster R-CNN by G-RMI [40] Inception-ResNet-v2 [41] 347 555 36.7 | 135  38.1 52.0
Faster R-CNN w/ TDM [42] Inception-ResNet-v2-TDM | 36.8 57.7 392 | 162 398 521
One-stage methods:
YOLOv2 [27] DarkNet-19 [27] 21.6  44.0 19.2 5.0 224 355
S5D513 [2] ResNet-101-S5D 31.2 504 33.3 102 345 498
YOLOV3 608 x 608 [3] Darknet-53 33.0 579 344 183 354 419
DSSD513 [43] ResNet-101-DSSD 33.2 533 35.2 130 354 511
RetinaNet [4] ResNet-101-FPN 39.1  59.1 423 | 218 427 502
CornerNet [29] Hourglass-104 40.5 56.5 43.1 194 427 539
FSAF [30] ResNeXt-64x4d-101-FPN 429 63.8 46.3 | 266 462 527
- CenterNet511 [44] Hourglass-104 449 624 48.1 256 474 574
FCOS ResNet-101-FPN 432 624 468 | 26.1 462 528
FCOS ResNeXt-32x8d-101-FPN 441  63.7 479 | 274 468 537
FCOS ResNeXt-64x4d-101-FPN 448 644 485 | 277 474 550
FCOS w/ deform. conv. v2 [45] | ResNeXt-32x8d-101-FPN 46.6 659 508 | 286 491 586
FCOS ResNet-101-BiFPN [46] 450 63.6 48.7 | 270 479 559
FCOS ResNeXt-32x8d-101-BiEPN | 46.2  65.2 50.0 | 28.7 49.1 56.5
FCOS w/ deform. conv. v2 ResNeXt-32x8d-101-BiFPN | 479  66.9 51.9 30.2 50.3 599
w/ test-time augmentation:
FCOS ResNet-101-FPN 459 645 504 | 294 483 561
FCOS ResNeXt-32x8d-101-FPN 470  66.0 516 | 307 494 571
FCOS ResNeXt-b4x4d-101-FPN 475 664 519 | 314 497 582
FCOS w/ deform. conv. v2 ResNeXt-32x8d-101-FPN 49.1  68.0 53.9 317 516 61.0
FCOS ResNet-101-BiFPN 479 659 525 | 310 507 5397
FCOS ResNeXt-32x8d-101-BiFPN | 49.0 67.4 53.6 | 320 517 605
FCOS w/ deform. conv. v2 50.4 68.9 55.0 | 33.2 53.0 627

ResNeXt-32x8d-101-BiFPN
TABLE 8

anchor-free detectors by a considerable margin.

FCOS vs. other state-of-the-art two-stage or one-stage detectors (single-model results). FCOS outperforms a few recent anchor-based and
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Pros of FCOS

« Much Simpler
— Much less hyper-parameters.
— Much easy to implement (e.g., don’t need to compute IOUs).

— Easy to extend to other tasks such as keypoint detection/instance
segmentation.

— Detection becomes a per-pixel prediction task.
« Faster training and testing with better performance

— FCOS achieves much better performance-speed tradeoff than all other
detectors. A real-time FCOS achieves 46 FPS/40.3mAP on 1080T!.

— In comparison, YOLOv3, ~40FPS/33mAP on 1080Ti.
— CenterNet, 14FPS/40.3mAP.

University of Adelaide



Instance segmentation
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BlendMask

» Instance-level attention tensor
*  Only four score maps (vs. 32 in YOLACT vs. 49 in FCIS)

« 20% faster than Mask-RCNN with higher performance under same
training setting

Detector module Detector feature — Connection
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Figure 2 — BlendMask pipeline Our framework builds upon the state-of-the-art FCOS object detector [ '] with minimal modification. The bottom module
uses either backbone or FPN features to predict a set of bases. A single convolution layer is added on top of the detection towers to produce attention
masks along with each bounding box prediction. For each predicted instance, the blender crops the bases with its bounding box and linearly combine them
according the learned attention maps. Note that the Bottom Module can take features either from ‘C’, or ‘P’ as the input.



Blending
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Figure 1 — Blending process. We illustrate an example of the learned
bases and attentions. Four bases and attention maps are shown in different
colors. The first row are the bases, and the second row are the attentions.
Here ® represents element-wise product and @ is element-wise sum. Each
basis multiplies its attention and then is summed to output the final mask.
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Interpretation of Bases and Attentions

 Bases
— Position-sensitive (Red & Blue)
— Semantic (Yellow & Green)
« Attention
— Instance poses
— Foreground/background

(a) Bottom-Level Bases (b) Top-Level attentions




Quantitative Results

Method | Backbone | Epochs | Aug. | Time (ms) | AP APso AP7; | APs APy AP

Mask R-CNN [ 1] 12 97.0 346 56.5 36.6 154 363 497
Mask R-CNN* 12 v 97+ 36.8 59.2 39.3 17.1 38.7 52.1
TensorMask [ 7] R-50 72 v 400+ 355 573 374 166 37.0 49.1
BlendMask 12 78.5 343 554 36.6 149 364 489
BlendMask 36 v 78.5 370 589 39.7 | 173 394 525

Mask R-CNN 12 118.1 36.2 586 38.4 164 384 52.1

Mask R-CNN* 36 v 118+ 383 612 40.8 182 40.6 54.1
TensorMask 72 v 400+ 373 595 39.5 175 393 51.6

SOLO [21] R-101 72 v - 37.8 595 40.4 164 406 542
+deform convs [21] 72 v - 404 627 43.3 176 433 589
BlendMask 36 v 101.8 384 60.7 41.3 182 415 533
BlendMask* 36 v 105.7 396 616 426 | 224 422 514
+deform convs (interval = 3) 60 v 116.0 41.3 63.1 46 | 227 441 54.5

Speed on V100 (ms/image):
* BlendMask: 73

* Mask R-CNN: 90

* TensorMask: 380




ours ours YOLACT M-RCNN ours ours YOLACT M-RCNN

ours ours YOLACT M-RCNN ours ours YOLACT M-RCNN




Easy to do Panoptic segmentation

Method | Backbone | PQ  SQ RQ [ PQ™ PQ™ mloU AP™ AP

Panoptic-FPN [ 1] R-50 415 79.1 505 | 483 312 429 400 365
BlendMask 425 801 516 | 495 320 435 418 37.2
Panoptic-FPN [ 1] R-101 43.0 80.0 52.1 | 49.7 329 445 424 385
BlendMask 443 801 534 | 516 332 449 440 389

Table 10 — Panoptic results on COCO val2017. Panoptic-FPN results are from the official Detectron2 implementation, which are improved upon the
original published results in [ ' ©].
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e Can we remove bounding box (and related Rol
align/pooling from Instance Segmentation?

University of Adelaide
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Issues of Axis-aligned ROIs

*kxPaulaner Xin Tian Dikxx
S CLOE
Tb] 636/1

 Difficult to encode irregular shapes
» May include irrelevant background - wAg
» Low resolution segmentation results s :

s
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Conditional Convolutions for Instance
Segmentation (ROI-free)

Main difference between instance & sematic segmentation: the same
appearance needs different predictions, which standard FCNs fail to
achieve.

Semantic Segmentation YA

Instance Segmentation




Dynamic Mask Heads
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Given input feature maps, CondInst employs different mask heads for
different target, bypassing the limitation of the standard FCNs.

University of Adelaide
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CondInst
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Figure 3. The overall architecture of CondlInst. C's, Cy and C'5 are the feature maps of the backbone network (e.g., ResNet-
50). Ps to P; are the FPN feature maps as in [8, 26]. F,,,sx 1S the mask branch’s output and Fmask 1s obtained by
concatenating the relative coordinates to F,,,s,. The classification head predicts the class probability p, , of the target
instance at location (z, y), same as in FCOS. Note that the classification and conv. parameter generating heads (in the dashed
box) are applied to Ps - - - P;. The mask head is instance-aware, whose conv. filters 8, ,, are dynamically generated for each

instance, and is applied to Fonask as many times as the number of instances in the image (refer to Fig. 1).
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Comparisons with Mask R-CNN

 Eliminating ROI operations and thus being fully
convolutional.

 Essentially, CondInst encodes the instance concept in the
generated filters.

 Ability to deal with irregular shapes due to the
elimination of axis-aligned boxes.

« High-resolution outputs (e.g., 400x512 vs. 28x28).

e Much lighter-weight mask heads (169 parameters vs.
2.3M in Mask R-CNN, half computation time).

e Qverall inference time is faster or the same as the well-
engineered Mask R-CNN in detectron2.

University of Adelaide 18



Ablation Study

depth | time | AP | AP5y AP75 | APs APy APp width | time | AP | AP5g AP75 | APs APy, APp

1 22 1309|529 314|140 333 45.1 2 25 [34.1| 554 358 [159 372 49.1

2 33 |355] 56.1 378 | 17.0 389 50.8 4 2.6 [356] 565 381 |17.0 39.2 514

3 45 357|563 37.8 |17.1 39.1 50.2 8 45 [35.7| 563 378 |17.1 39.1 50.2

4 5.6 |35.7| 562 379 (17.2 387 51.5 16 47 135.6| 562 379 | 17.2 388 50.8
(a) Varying the depth (width = 8). (b) Varying the width (depth = 3).

Table 1: Instance segmentation results with different architectures of the mask head on MS-COCO val2017 split. “depth”:
the number of layers in the mask head. “width”: the number of channels of these layers. “time”: the milliseconds that the
mask head takes for processing 100 instances.

Only cost ~5ms for even the maximum number of boxes!

w/ abs. coord. | w/ rel. coord. | W/ F0sk | AP | AP5g AP75 | APs APp; APp | AR;1 ARip ARjgo
v 314 | 535 321 | 156 344 447|284 441 46.2

v 313|549 318 [16.0 342 43.6|27.1 433 457
v v 32.0| 533 329 | 147 342 46.8|287 447 468
v v 357|563 378 |17.1 39.1 50.2 304 488 515

Table 3: Ablation study of the input to the mask head on MS-COCO val2017 split. As shown in the table, without the
relative coordinates, the performance drops significantly from 35.7% to 31.4% in mask AP. Using the absolute coordinates
cannot improve the performance remarkably (only 32.0%), which implies that the generated filters mainly encode the local
cues (e.g., shapes). Moreover, if the mask head only takes as input the relative coordinates (i.e., no appearance features in
this case), CondlInst also achieves modest performance (31.3%).
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Experimental Results

method backbone aug. sched. AP APs5g AP75 APg APy APy,
Mask R-CNN [3] R-50-FPN 1x 34.6 56.5 36.6 154 36.3 49.7
CondInst R-50-FPN 1x 354 56.4 37.6 18.4 37.9 46.9
Mask R-CNN* R-50-FPN v 1x 35.5 57.0 37.8 19.5 37.6 46.0
Mask R-CNN* R-50-FPN v 3X 37.5 59.3 40.2 21.1 39.6 48.3
TensorMask [13] R-50-FPN v 6% 354 57.2 37.3 16.3 36.8 493
CondInst R-50-FPN v 1x 359 56.9 38.3 19.1 38.6 46.8
CondInst R-50-FPN v 3X 37.8 59.1 40.5 21.0 40.3 48.7
CondInst w/ sem. R-50-FPN v 3% 38.8 60.4 41.5 21.1 41.1 51.0
Mask R-CNN R-101-FPN v 6 % 38.3 61.2 40.8 18.2 40.6 54.1
Mask R-CNN* R-101-FPN v 3X 38.8 60.9 419 21.8 41.4 50.5
YOLACT-700 [2] R-101-FPN v 4.5% 31.2 50.6 32.8 12.1 333 47.1
TensorMask R-101-FPN v 6% 37.1 59.3 394 17.4 39.1 51.6
CondInst R-101-FPN v 3x 39.1 60.9 42.0 21.5 41.7 50.9
CondInst w/ sem. | R-101-FPN v 3x 40.1 62.1 43.1 21.8 42.7 52.6

Table 6: Comparisons with state-of-the-art methods on MS-COCO test-dev. “Mask R-CNN” is the original Mask R-CNN
[3] and “Mask R-CNN*” is the improved Mask R-CNN in Detectron2 [35]. “aug.”: using multi-scale data augmentation
during training. “sched.”: the used learning rate schedule. ““1 x”” means that the models are trained with 90 K iterations, ‘“2x”
is 180K iterations and so on. The learning rate is changed as in [36]. ‘w/ sem”: using the auxiliary semantic segmentation
task.
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SOLO: Segmenting objects by locations

person
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Current Instance Segmentation methods

Grouping

Detect-then-segment Label-then-cluster
e.g., Mask R-CNN e.g., Discriminative loss




Current Instance Segmentation methods

Detect-then-segment:
MNC, FCIS, Mask R-CNN,

TensorMask
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SOLO Motivation

Both the two paradigms are step-wise and indirect.

1. Top-down methods heavily rely on accurate bounding box detection.

2, Bottom-up methods depend on per-pixel embedding learning and the
grouping processing.

How can we make it simple and direct?




SOLO Motivation

forward /inference

<€

backward/learning
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Semantic segmentation: Classifying pixels into semantic categories.




Can we convert instance segmentation into a
per-pixel classification problem?




SOLO Motivation

How to convert instance segmentation into a per-pixel classification
problem?

What are the fundamental differences between object instances in an

1 ?
1mage: + Instance location
* Object shape
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SOLO Motivation

SOLO: Segmenting Objects by Locations

* Quantizing the locations -> mask category

« Semantic category




SOLO Framework
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SOLO Framework

Category Branch % [ 11

instance at grid (i, j)

mask at channel k, k=i xS+

Input image Mask Branch

Simple, fast to implement and train/test




SOLO Framework

image and masks masks with S = 12




SOLO Framework

Loss Function

L= Lcate Al /\Lmask

\ 4

Classification Loss
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Dice Loss
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SOLO Framework

(a) Mask R-CNN (b) SOLO




Main Results: COCO

backbone AP  APs0 AP7;s APs APy APL

Iwo-stage:
MNC [3] Res-101-C4 246 443 24.8 4.7 259 436
FCIS [10] Res-101-C5 202 495 — 7491 31.3 50.0
Mask R-CNN (7] Res-101-FPN 35.7 58.0 37.8 15.5 38.1 524

[Mask R-CNN™ [2] | Res-50-FPN 36.8] 59.2 39.3 17.1 38.7 52.1
Mask R-CNN™ [2] | Res-101-FPN 383 61.2 40.8 18.2 40.6 54.1

one-stage:

[TensorMask [2] Res-50-FPN 35.4] 57.2 37.3 16.3 36.8 493
TensorMask [2] Res-101-FPN 37.1 59.3 394 174  39.1 51.6
YOLACT [1] Res-101-FPN 31.2 506 32.8 12.1 33.3 47.1
PolarMask [27] Res-101-FPN 304 519 31.0 13.4 324 42.8

ours:

[ SOLO Res-50-FPN 36.8] 58.6 39.0 159 395 52:1
SOLO Res-101-FPN 37.8 595 40.4 164 406 542
SOLO Res-DCN-101-FPN | 404  62.7 43.3 176 433 58.9

Table 1 — Instance segmentation mask AP on COCO test-dev. All entries are single-model results. Here we adopt the “6x™ schedule (72
epochs) for better results. Mask R-CNN” is the improved version in [2].

e comparable to Mask R-CNN
e 1.4 AP better than state-of-the-art one-stage methods
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From SOLO to Decoupled SOLO

-----------

F M: Hx W xS?

Vanilla head

predict p(k), where k=i x§ +j

> mask

-----------

/ HxWxS
/ ()‘(> — mask

! X-branch j =

/ HxWxS

Decoupled head

predict p(i), p(j), and p(k) = p(i)p(j)




| AP APy, AP;; | APs APy AP
Vanilla SOLO | 35.8 57.1 378 | 150 387 53.6
Decoupled SOLO | 35.8 57.2 377 | 163 39.1 522

e an equivalent variant in accuracy
e considerably less GPU memory during training and testing
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Thanks. That’s all.

 All papers are available at arXiv. Code is available at

https://git.io/AdelaiDet
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