
Single-shot Instance Segmentation
Chunhua Shen, June 2020

(majority of work done by my students: Zhi tian, Hao Chen, and Xinlong Wang)

University of Adelaide 2

FCOS Detector

Tian, Zhi, et al. "FCOS: Fully convolutional one-stage object detection." Proc. Int. Conf.
Comp. Vis. 2019.

University of Adelaide 3

Overview of FCOS

Performance

University of Adelaide 4

Pros of FCOS
• Much Simpler

– Much less hyper-parameters.
– Much easy to implement (e.g., don’t need to compute IOUs).
– Easy to extend to other tasks such as keypoint detection/instance

segmentation.
– Detection becomes a per-pixel prediction task.

• Faster training and testing with better performance
– FCOS achieves much better performance-speed tradeoff than all other

detectors. A real-time FCOS achieves 46FPS/40.3mAP on 1080Ti.
– In comparison, YOLOv3, ~40FPS/33mAP on 1080Ti.
– CenterNet, 14FPS/40.3mAP.

University of Adelaide 5

Instance segmentation

University of Adelaide 6

BlendMask
• Instance-level attention tensor
• Only four score maps (vs. 32 in YOLACT vs. 49 in FCIS)
• 20% faster than Mask-RCNN with higher performance under same

training setting

Blending

University of Adelaide 8

Interpretation of Bases and Attentions
• Bases

– Position-sensitive (Red & Blue)
– Semantic (Yellow & Green)

• Attention
– Instance poses
– Foreground/background

Quantitative Results

Speed on V100 (ms/image):
• BlendMask: 73
• Mask R-CNN: 90
• TensorMask: 380

Easy to do Panoptic segmentation

University of Adelaide 12

• Can we remove bounding box (and related RoI
align/pooling from Instance Segmentation?

University of Adelaide 13

Issues of Axis-aligned ROIs

University of Adelaide 14

• Difficult to encode irregular shapes
• May include irrelevant background
• Low resolution segmentation results

Conditional Convolutions for Instance
Segmentation (ROI-free)

Main difference between instance & sematic segmentation: the same
appearance needs different predictions, which standard FCNs fail to
achieve.

University of Adelaide 15

14 L.-C Chen, Y. Zhu, G. Papandreou, F. Schro↵, and H. Adam

Fig. 6. Visualization results on val set. The last row shows a failure mode.

Backbone Decoder ASPP Image-Level mIOU

X-65 X X 77.33
X-65 X X X 78.79
X-65 X X 79.14
X-71 X X 79.55

Method Coarse mIOU

ResNet-38 [83] X 80.6
PSPNet [24] X 81.2
Mapillary [86] X 82.0

DeepLabv3 X 81.3

DeepLabv3+ X 82.1

(a) val set results (b) test set results
Table 7. (a) DeepLabv3+ on the Cityscapes val set when trained with train fine set.
(b) DeepLabv3+ on Cityscapes test set. Coarse: Use train extra set (coarse annota-
tions) as well. Only a few top models are listed in this table.

models. As shown in Tab. 7 (b), our proposed DeepLabv3+ attains a performance
of 82.1% on the test set, setting a new state-of-art performance on Cityscapes.

5 Conclusion

Our proposed model “DeepLabv3+” employs the encoder-decoder structure where
DeepLabv3 is used to encode the rich contextual information and a simple yet
e↵ective decoder module is adopted to recover the object boundaries. One could
also apply the atrous convolution to extract the encoder features at an arbitrary
resolution, depending on the available computation resources. We also explore
the Xception model and atrous separable convolution to make the proposed
model faster and stronger. Finally, our experimental results show that the pro-
posed model sets a new state-of-the-art performance on PASCAL VOC 2012 and
Cityscapes datasets.

Acknowledgments We would like to acknowledge the valuable discussions
with Haozhi Qi and Jifeng Dai about Aligned Xception, the feedback from Chen
Sun, and the support from Google Mobile Vision team.

Semantic Segmentation

Instance Segmentation

Dynamic Mask Heads

University of Adelaide 16

Conditional Convolutions for Instance Segmentation

Zhi Tian Chunhua Shen* Hao Chen

The University of Adelaide, Australia

Abstract

We propose a simple yet effective instance segmenta-
tion framework, termed CondInst (conditional convolutions
for instance segmentation). Top-performing instance seg-
mentation methods such as Mask R-CNN rely on ROI op-
erations (typically ROIPool or ROIAlign) to obtain the fi-
nal instance masks. In contrast, we propose to solve in-
stance segmentation from a new perspective. Instead of
using instance-wise ROIs as inputs to a network of fixed
weights, we employ dynamic instance-aware networks, con-
ditioned on instances. CondInst enjoys two advantages:
1) Instance segmentation is solved by a fully convolutional
network, eliminating the need for ROI cropping and fea-
ture alignment. 2) Due to the much improved capacity of
dynamically-generated conditional convolutions, the mask
head can be very compact (e.g., 3 conv. layers, each having
only 8 channels), leading to significantly faster inference.
We demonstrate a simpler instance segmentation method
that can achieve improved performance in both accuracy
and inference speed. On the COCO dataset, we outper-
form a few recent methods including well-tuned Mask R-
CNN baselines, without longer training schedules needed.
Code is available: https://git.io/AdelaiDet
Keywords: Conditional convolutions, instance segmenta-
tion

1. Introduction
Instance segmentation is a fundamental yet challenging

task in computer vision, which requires an algorithm to pre-
dict a per-pixel mask with a category label for each instance
of interest in an image. Despite a few works being proposed
recently, the dominant framework for instance segmenta-
tion is still the two-stage method Mask R-CNN [3], which
casts instance segmentation into a two-stage detection-and-
segmentation task. Mask R-CNN first employs an ob-
ject detector Faster R-CNN to predict a bounding-box for
each instance. Then for each instance, regions-of-interest
(ROIs) are cropped from the networks’ feature maps us-

*Corresponding author, e-mail: chunhua.shen@adelaide.edu.au

output
instance masks

…

co
nv

co
nv

co
nv

mask head K

co
nv

co
nv

co
nv

mask head 1

…

instance-aware
mask heads

features
w/ rel. coord.

…
Figure 1. CondInst makes use of instance-aware mask
heads to predict the masks for each instance. K is the num-
ber of instances to be predicted. The filters in the mask
head vary with different instances, which are dynamically-
generated and conditioned on the target instance. For the
non-last conv. layers in the mask head, ReLU is used as the
activation function and no normalization layer such as batch
normalization [1] is used here. The last conv. layer uses sig-
moid to predict the probability of being mask foreground.

ing the ROIAlign operation. To predict the final masks
for each instance, a compact fully convolutional network
(FCN) (i.e., mask head) is applied to these ROIs to per-
form foreground/background segmentation. However, this
ROI-based method may have the following drawbacks. 1)
Since ROIs are often axis-aligned bounding-boxes, for ob-
jects with irregular shapes, they may contain an excessive
amount of irrelevant image content including background
and other instances. This issue may be mitigated by us-
ing rotated ROIs, but with the price of a more complex
pipeline. 2) In order to distinguish between the foreground
instance and the background stuff or instance(s), the mask
head requires a relatively larger receptive field to encode
sufficiently large context information. As a result, a stack
of 3⇥ 3 convolutions is needed in the mask head (e.g., four
3 ⇥ 3 convolutions with 256 channels in Mask R-CNN).
It considerably increases computational complexity of the
mask head, resulting that the inference time significantly
varies in the number of instances. 3) ROIs are typically of

1

ar
X

iv
:2

00
3.

05
66

4v
3

 [c
s.C

V
]

19
 M

ar
 2

02
0

Given input feature maps, CondInst employs different mask heads for
different target, bypassing the limitation of the standard FCNs.

CondInst

University of Adelaide 17

m
as

k
br

an
ch

assign to

co
nv

co
nv

co
nv

mask FCN head …

output instance masks

append
rel. coord.

head

head

head

head

head

Convs

Convs

classification px, y

controller
(generating filters !x, y)

shared head

Figure 3. The overall architecture of CondInst. C3, C4 and C5 are the feature maps of the backbone network (e.g., ResNet-
50). P3 to P7 are the FPN feature maps as in [8, 26]. Fmask is the mask branch’s output and F̃mask is obtained by
concatenating the relative coordinates to Fmask. The classification head predicts the class probability pppx,y of the target
instance at location (x, y), same as in FCOS. Note that the classification and conv. parameter generating heads (in the dashed
box) are applied to P3 · · ·P7. The mask head is instance-aware, whose conv. filters ✓✓✓x,y are dynamically generated for each
instance, and is applied to F̃mask as many times as the number of instances in the image (refer to Fig. 1).

depending on the number of instances in the image. This
poses a challenge when applying traditional FCNs [6] to in-
stance segmentation. In this work, our core idea is that for
an image with K instances, K different mask heads will
be dynamically generated, and each mask head will contain
the characteristics of its target instance in their filters. As a
result, when the mask is applied to an input, it will only fire
on the pixels of the instance, thus producing the mask pre-
diction of the instance. We illustrate the process in Fig. 1.

Recall that Mask R-CNN employs an object detector to
predict the bounding-boxes of the instances in the input im-
age. The bounding-boxes are actually the way that Mask
R-CNN represents instances. Similarly, CondInst employs
the instance-aware filters to represent the instances. In other
words, instead of encoding the instance concept into the
bounding-boxes, CondInst implicitly encodes it into the pa-
rameters of the mask heads, which is a much more flexi-
ble way. For example, it can easily represent the irregular
shapes that are hard to be tightly enclosed by a bounding-
box. This is one of CondInst’s advantages over the previous
ROI-based methods.

Similar to the way that ROI-based methods obtain
bounding-boxes, the instance-aware filters can also be ob-
tained with an object detector. In this work, we build
CondInst on the popular object detector FCOS [8] due to its
simplicity and flexibility. Also, the elimination of anchor-
boxes in FCOS can also save the number of parameters

and the amount of computation of CondInst. As shown
in Fig. 3, following FCOS [8], we make use of the fea-
ture maps {P3, P4, P5, P6, P7} of feature pyramid networks
(FPNs) [26], whose down-sampling ratios are 8, 16, 32, 64
and 128, respectively. As shown in Fig. 3, on each feature
level of the FPN, some functional layers (in the dash box)
are applied to make instance-related predictions. For ex-
ample, the class of the target instance and the dynamically-
generated filters for the instance. In this sense, CondInst
can be viewed as the same as Mask R-CNN, both of which
first attend to instances in an image and then predict the
pixel-level masks of the instances (i.e., instance-first).

Besides the detector, as shown in Fig. 3, there is also
a mask branch, which provides the feature maps that our
generated mask heads take as inputs to predict the desired
instance mask. The feature maps are denoted by Fmask 2
RHmask⇥Wmask⇥Cmask . The mask branch is connected to
FPN level P3 and thus its output resolution is 1

8 of the input
image resolution. The mask branch has four 3⇥ 3 convolu-
tions with 128 channels before the last layer. Afterwards, in
order to reduce the number of the generated parameters, the
last layer of the mask branch reduces the number of chan-
nels from 128 to 8 (i.e., Cmask = 8). Surprisingly, using
Cmask = 8 can already achieve superior performance and
using a larger Cmask here (e.g., 16) cannot improve the per-
formance, as shown in our experiments. Even more aggres-
sively, using Cmask = 2 only degrades the performance by

4

Comparisons with Mask R-CNN

• Eliminating ROI operations and thus being fully
convolutional.

• Essentially, CondInst encodes the instance concept in the
generated filters.

• Ability to deal with irregular shapes due to the
elimination of axis-aligned boxes.

• High-resolution outputs (e.g., 400x512 vs. 28x28).
• Much lighter-weight mask heads (169 parameters vs.

2.3M in Mask R-CNN, half computation time).
• Overall inference time is faster or the same as the well-

engineered Mask R-CNN in detectron2.

University of Adelaide 18

Ablation Study

University of Adelaide 19

depth time AP AP50 AP75 APS APM APL

1 2.2 30.9 52.9 31.4 14.0 33.3 45.1
2 3.3 35.5 56.1 37.8 17.0 38.9 50.8
3 4.5 35.7 56.3 37.8 17.1 39.1 50.2
4 5.6 35.7 56.2 37.9 17.2 38.7 51.5

(a) Varying the depth (width = 8).

width time AP AP50 AP75 APS APM APL

2 2.5 34.1 55.4 35.8 15.9 37.2 49.1
4 2.6 35.6 56.5 38.1 17.0 39.2 51.4
8 4.5 35.7 56.3 37.8 17.1 39.1 50.2

16 4.7 35.6 56.2 37.9 17.2 38.8 50.8
(b) Varying the width (depth = 3).

Table 1: Instance segmentation results with different architectures of the mask head on MS-COCO val2017 split. “depth”:
the number of layers in the mask head. “width”: the number of channels of these layers. “time”: the milliseconds that the
mask head takes for processing 100 instances.

Cmask AP AP50 AP75 APS APM APL

1 34.8 55.9 36.9 16.7 38.0 50.1
2 35.4 56.2 37.6 16.9 38.9 50.4
4 35.5 56.2 37.9 17.0 39.0 50.8
8 35.7 56.3 37.8 17.1 39.1 50.2

16 35.5 56.1 37.7 16.4 39.1 51.2

Table 2: The instance segmentation results by varying the
number of channels of the mask branch output (i.e., Cmask)
on MS-COCO val2017 split. As shown in the table, the
performance keeps almost the same if Cmask is in a rea-
sonable range, which suggests that CondInst is robust to the
design choice.

The mask head with depth being 1 achieves inferior per-
formance as in this case the mask head is actually a linear
mapping, which has overly weak capacity. Moreover, as
shown in Table 1b, varying the width (i.e., the number of
the channels) does not result in a remarkable performance
change either as long as the width is in a reasonable range.
We also note that our mask head is extremely light-weight
as the filters in our mask head are dynamically generated.
As shown in Table 1, our baseline mask head only takes 4.5
ms per 100 instances (the maximum number of instances on
MS-COCO), which suggests that our mask head only adds
small computational overhead to the base detector. More-
over, our baseline mask head only has 169 parameters in
total. In sharp contrast, the mask head of Mask R-CNN [3]
has more than 2.3M parameters and takes ⇠ 2.5⇥ compu-
tational time (11.4 ms per 100 instances).

3.3. Design Choices of the Mask Branch

We further investigate the impact of the mask branch.
We first change Cmask, which is the number of channels
of the mask branch’s output feature maps (i.e., Fmask). As
shown in Table 2, as long as Cmask is in a reasonable range
(i.e., from 2 to 16), the performance keeps almost the same.
Cmask = 8 is optimal and thus we use Cmask = 8 in all

other experiments by default.
As mentioned before, before taken as the input of the

mask heads, the mask branch’s output Fmask is concate-
nated with a map of relative coordinates, which provides a
strong cue for the mask prediction. As shown in Table 3
(2nd row), the performance drops significantly if the rela-
tive coordinates are removed (35.7% vs. 31.4%). The sig-
nificant performance drop implies that the generated filters
not only encode the appearance cues but also encode the
shape of the target instance. It can also be evidenced by the
experiment only using the relative coordinates. As shown
in Table 3 (2rd row), only using the relative coordinates can
also obtain decent performance (31.3% in mask AP). We
would like to highlight that unlike Mask R-CNN, which en-
codes the shape of the target instance by a bounding-box,
CondInst implicitly encodes the shape into the generated
filters, which can easily represent any shapes including ir-
regular ones and thus is much more flexible. We also exper-
iment with the absolute coordinates, but it cannot largely
boost the performance as shown in Table 3 (32.0%). This
suggests that the generated filters mainly carry local cues
such as shapes. It is preferred to mainly rely on the local
cues because we hope that CondInst is translation invariant.

3.4. How Important to Upsample Mask Predic-
tions?

As mentioned before, the original mask prediction is up-
sampled and the upsampling is of great importance to the
final performance. We confirm this in the experiment. As
shown in Table 4, without using the upsampling (1st row in
the table), in this case CondInst can produce the mask pre-
diction with 1

8 of the input image resolution, which merely
achieves 34.4% in mask AP because most of the details
(e.g., the boundary) are lost. If the mask prediction is up-
sampled by factor = 2, the performance can be significantly
improved by 1.4% in mask AP (from 34.4% to 35.8%). In
particular, the improvement on small objects is large (from
15.1% to 17.0), which suggests that the upsampling can
greatly retain the details of objects. Increasing the upsam-
pling factor to 4 slightly worsens the performance (from

7

Only cost ~5ms for even the maximum number of boxes!

w/ abs. coord. w/ rel. coord. w/ Fmask AP AP50 AP75 APS APM APL AR1 AR10 AR100

X 31.4 53.5 32.1 15.6 34.4 44.7 28.4 44.1 46.2
X 31.3 54.9 31.8 16.0 34.2 43.6 27.1 43.3 45.7

X X 32.0 53.3 32.9 14.7 34.2 46.8 28.7 44.7 46.8
X X 35.7 56.3 37.8 17.1 39.1 50.2 30.4 48.8 51.5

Table 3: Ablation study of the input to the mask head on MS-COCO val2017 split. As shown in the table, without the
relative coordinates, the performance drops significantly from 35.7% to 31.4% in mask AP. Using the absolute coordinates
cannot improve the performance remarkably (only 32.0%), which implies that the generated filters mainly encode the local
cues (e.g., shapes). Moreover, if the mask head only takes as input the relative coordinates (i.e., no appearance features in
this case), CondInst also achieves modest performance (31.3%).

factor resolution AP AP50 AP75 APS APM APL

1 1/8 34.4 55.4 36.2 15.1 38.4 50.8
2 1/4 35.8 56.4 38.0 17.0 39.3 51.1
4 1/2 35.7 56.3 37.8 17.1 39.1 50.2

Table 4: The instance segmentation results on MS-COCO
val2017 split by changing the factor used to upsample the
mask predictions. “resolution” denotes the resolution ratio
of the mask prediction to the input image. As shown in
the table, if without the upsampling (i.e., factor = 1), the
performance drops significantly (from 35.8% to 34.4% in
mask AP). Almost the same results are obtained with ratio
2 or 4.

35.8% to 35.7% in mask AP), probably due to the relatively
low-quality annotations of MS-COCO. We use factor = 4
in all other models as it has the potential to produce high-
resolution instance masks.

3.5. CondInst without Bounding-box Detection
Although we still keep the bounding-box detection

branch in CondInst, it is conceptually feasible to totally
eliminate it if we make use of the NMS using no bounding-
boxes. In this case, all the foreground samples (determined
by the classification head) will be used to compute instance
masks, and the duplicated masks will be removed by mask-
based NMS. As shown in Table 5, with the mask-based
NMS, the same overall performance can be obtained as box-
based NMS (35.7% vs. 35.7% in mask AP).

3.6. Comparisons with State-of-the-art Methods
We compare CondInst against previous state-of-the-art

methods on MS-COCO test-dev split. As shown in Ta-
ble 6, with 1⇥ learning rate schedule (i.e., 90K iterations),
CondInst outperforms the original Mask R-CNN by 0.8%
(35.4% vs. 34.6%). CondInst also achieves a much faster
speed than the original Mask R-CNN (49ms vs. 65ms per
image on a single V100 GPU). To our knowledge, it is

NMS AP AP50 AP75 APS APM APL

box 35.7 56.3 37.8 17.1 39.1 50.2
mask 35.7 56.7 37.7 17.2 39.2 50.5

Table 5: Instance segmentation results with different NMS
algorithms. As shown in the table, mask-based NMS can
obtain the same overall performance as box-based NMS,
which suggests that CondInst can totally eliminate the
bounding-box detection. Note that it is impossible for ROI-
based methods such as Mask R-CNN to remove bounding-
box detection.

the first time that a new and simpler instance segmentation
method, without any bells and whistles outperforms Mask
R-CNN both in accuracy and speed. CondInst also obtains
better performance (35.9% vs. 35.5%) and on-par speed
(49ms vs 49ms) than the well-engineered Mask R-CNN in
Detectron2 (i.e., Mask R-CNN⇤ in Table 6). Furthermore,
with a longer training schedule (e.g., 3⇥) or a stronger
backbone (e.g., ResNet-101), a consistent improvement is
achieved as well (37.8% vs. 37.5% with ResNet-50 3⇥ and
39.1% vs. 38.8% with ResNet-101 3⇥), which suggests
CondInst is inherently superior to Mask R-CNN. Moreover,
as shown in Table 6, with the auxiliary semantic segmen-
tation task, the performance can be boosted from 37.8% to
38.8% (ResNet-50) or from 39.1% to 40.1% (ResNet-101),
without increasing the inference time. For fair comparisons,
all the inference time here is measured by ourselves on the
same hardware with the official codes.

We also compare CondInst with the recently-proposed
instance segmentation methods. Only with half training it-
erations, CondInst surpasses TensorMask [13] by a large
margin (38.8% vs. 35.4% for ResNet-50 and 39.1% vs.
37.1% for ResNet-101). CondInst is also ⇠ 8⇥ faster than
TensorMask (49ms vs 380ms per image on the same GPU)
with similar performance (37.8% vs. 37.1%). Moreover,
CondInst outperforms YOLACT-700 [2] by a large margin
with the same backbone ResNet-101 (40.1% vs. 31.2% and

8

Experimental Results

University of Adelaide 20

method backbone aug. sched. AP AP50 AP75 APS APM APL

Mask R-CNN [3] R-50-FPN 1⇥ 34.6 56.5 36.6 15.4 36.3 49.7
CondInst R-50-FPN 1⇥ 35.4 56.4 37.6 18.4 37.9 46.9
Mask R-CNN⇤ R-50-FPN X 1⇥ 35.5 57.0 37.8 19.5 37.6 46.0
Mask R-CNN⇤ R-50-FPN X 3⇥ 37.5 59.3 40.2 21.1 39.6 48.3
TensorMask [13] R-50-FPN X 6⇥ 35.4 57.2 37.3 16.3 36.8 49.3
CondInst R-50-FPN X 1⇥ 35.9 56.9 38.3 19.1 38.6 46.8
CondInst R-50-FPN X 3⇥ 37.8 59.1 40.5 21.0 40.3 48.7
CondInst w/ sem. R-50-FPN X 3⇥ 38.8 60.4 41.5 21.1 41.1 51.0
Mask R-CNN R-101-FPN X 6⇥ 38.3 61.2 40.8 18.2 40.6 54.1
Mask R-CNN⇤ R-101-FPN X 3⇥ 38.8 60.9 41.9 21.8 41.4 50.5
YOLACT-700 [2] R-101-FPN X 4.5⇥ 31.2 50.6 32.8 12.1 33.3 47.1
TensorMask R-101-FPN X 6⇥ 37.1 59.3 39.4 17.4 39.1 51.6
CondInst R-101-FPN X 3⇥ 39.1 60.9 42.0 21.5 41.7 50.9
CondInst w/ sem. R-101-FPN X 3⇥ 40.1 62.1 43.1 21.8 42.7 52.6

Table 6: Comparisons with state-of-the-art methods on MS-COCO test-dev. “Mask R-CNN” is the original Mask R-CNN
[3] and “Mask R-CNN⇤” is the improved Mask R-CNN in Detectron2 [35]. “aug.”: using multi-scale data augmentation
during training. “sched.”: the used learning rate schedule. “1⇥” means that the models are trained with 90K iterations, “2⇥”
is 180K iterations and so on. The learning rate is changed as in [36]. ‘w/ sem”: using the auxiliary semantic segmentation
task.

both with the auxiliary semantic segmentation task). More-
over, as shown in Fig. 2, compared with YOLACT-700 and
Mask R-CNN, CondInst can preserve more details and pro-
duce higher-quality instance segmentation results. More
qualitative results are shown in Fig. 4.

4. Conclusions

We have proposed a new and simpler instance segmenta-
tion framework, named CondInst. Unlike previous method
such as Mask R-CNN, which employs the mask head with
fixed weights, CondInst conditions the mask head on in-
stances and dynamically generates the filters of the mask
head. This not only reduces the parameters and computa-
tional complexity of the mask head, but also eliminates the
ROI operations, resulting in a faster and simpler instance
segmentation framework. To our knowledge, CondInst is
the first framework that can outperform Mask R-CNN both
in accuracy and speed, without longer training schedules
needed. We believe that CondInst can be a new strong al-
ternative to Mask R-CNN for instance segmentation.

References

[1] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
arXiv preprint arXiv:1502.03167, 2015.

[2] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “YOLACT: real-
time instance segmentation,” in Proc. IEEE Int. Conf. Comp.
Vis., pp. 9157–9166, 2019.

[3] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-
CNN,” in Proc. IEEE Int. Conf. Comp. Vis., pp. 2961–2969,
2017.

[4] A. Paszke et al., “PyTorch: An imperative style, high-
performance deep learning library,” in Proc. Advances in
Neural Inf. Process. Syst., pp. 8024–8035, 2019.

[5] M. Abadi et al., “TensorFlow: A system for large-scale ma-
chine learning,” in USENIX Symp. Operating Systems De-
sign & Implementation (OSDI), pp. 265–283, 2016.

[6] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” in Proc. IEEE Conf.
Comp. Vis. Patt. Recogn., pp. 3431–3440, 2015.

[7] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. Yuille, “Deeplab: Semantic image segmentation with
deep convolutional nets, atrous convolution, and fully con-
nected CRFs,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 40, no. 4, pp. 834–848, 2017.

[8] Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: Fully convo-
lutional one-stage object detection,” in Proc. IEEE Int. Conf.
Comp. Vis., pp. 9627–9636, 2019.

[9] F. Liu, C. Shen, G. Lin, and I. Reid, “Learning depth from
single monocular images using deep convolutional neural
fields,” IEEE Trans. Pattern Anal. Mach. Intell., 2016.

[10] L. Boominathan, S. Kruthiventi, and R. V. Babu, “Crowdnet:
A deep convolutional network for dense crowd counting,” in
Proc. ACM Int. Conf. Multimedia, pp. 640–644, ACM, 2016.

[11] X. Jia, B. De Brabandere, T. Tuytelaars, and L. V. Gool, “Dy-
namic filter networks,” in Proc. Advances in Neural Inf. Pro-
cess. Syst., pp. 667–675, 2016.

[12] B. Yang, G. Bender, Q. V. Le, and J. Ngiam, “Condconv:
Conditionally parameterized convolutions for efficient in-

9

SOLO: Segmenting objects by locations

Current Instance Segmentation methods

Detect-then-segment
e.g., Mask R-CNN

Label-then-cluster
e.g., Discriminative loss

Detect-then-segment：

MNC, FCIS, Mask R-CNN,

TensorMask

Label-then-cluster：
SGN, SSAP, AE

MNC, 2015

FCIS, 2016

Mask R-CNN,
2017

SGN,
2017

SSAP,
2019

Current Instance Segmentation methods

Both the two paradigms are step-wise and indirect.

1. Top-down methods heavily rely on accurate bounding box detection.
2. Bottom-up methods depend on per-pixel embedding learning and the

grouping processing.

How can we make it simple and direct?

SOLO Motivation

Semantic segmentation: Classifying pixels into semantic categories.

Figure credit: Long et al

SOLO Motivation

Can we convert instance segmentation into a
per-pixel classification problem?

How to convert instance segmentation into a per-pixel classification
problem?

What are the fundamental differences between object instances in an
image? • Instance location

• Object shape

SOLO Motivation

SOLO: Segmenting Objects by Locations

• Quantizing the locations -> mask category

• Semantic category

SOLO Motivation

SOLO Framework

S x S Grid

S^2 masks

instance at grid (i, j)

mask at channel k, k = i × S + j

Simple, fast to implement and train/test

SOLO Framework

image and masks masks with S = 12

SOLO Framework

Loss Function

Classification Loss

Dice Loss

k = i × S + j

SOLO Framework

SOLO Framework

● comparable to Mask R-CNN
● 1.4 AP better than state-of-the-art one-stage methods

Main Results: COCO

S = 12

SOLO Behavior

Vanilla head Decoupled head

From SOLO to Decoupled SOLO

predict p(k), where k = i × S + j predict p(i), p(j), and p(k) = p(i)p(j)

● an equivalent variant in accuracy
● considerably less GPU memory during training and testing

Thanks. That’s all.

• All papers are available at arXiv. Code is available at

https://git.io/AdelaiDet

University of Adelaide 40

