# Decoupling Representation and Classifier for Long-Tailed Recognition

Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, Yannis Kalantidis





## Long-tailed classification

#### **Problem statement**

- Training set: long-tailed distribution
  - Head v.s. Tail
- □ Testing set: balanced distribution
- □ Evaluation: three splits based on cardinality

#### **Existing methods**

- Rebalancing the data
  Up/Down sampling tail/head classes.
- Rebalancing the loss
  Assign larger/smaller weight to tail/head classes.
  e.g., CB-Focal[1], LDAM[2]



Cui, Yin, et al. "Class-balanced loss based on effective number of samples." CVPR. 2019.
 Cao, Kaidi, et al. "Learning imbalanced datasets with label-distribution-aware margin loss." NIPS. 2019.

## The problem behind long-tail

Classification performance 😑 Representation Quality 😔 Classifier Quality



### The problem behind long-tail

Classification performance Representation Quality & Classifier Quality



### The problem behind long-tail

Classification performance Representation Quality 👳 Classifier Quality



### **Notations**

- Feature representation:  $f(x; \theta) = z$
- Linear classifiers:  $g_i(z) = Wi^T z + b$
- Final prediction:  $\hat{y} = argmax \ gi(z)$

### What is the problem with the classifier?



• After joint training with instance-balanced sampling, the norms of the weights  $||w_j||$  are **correlated** with the size of the classes  $n_j$ .

### How to improve the classifier? -- Three ways

KEY: break the norm v.s. class size correlation.



I. Classifier Retraining (cRT)

- □ Freeze the representation.
- Retrain the linear classifier with classbalanced sampling.

### How to improve the classifier? -- Three ways

# **KEY:** break the norm v.s. #data correlation.



#### Weight norm visualization

#### I. Classifier Retraining (cRT)

- □ Freeze the representation.
- Retrain the linear classifier with class- balanced sampilng.

#### II. Tau-Normalization (**r**-Norm)

Adjust the classifier weight norms directly

$$\widetilde{w_i} = rac{w_i}{||w_i||^{ au}}$$

□ Tau is "temperature" of the normalization.

### How to improve the classifier? -- Three ways

# **KEY:** break the norm v.s. #data correlation.



#### Weight norm visualization

#### I. Classifier Retraining (cRT)

- □ Freeze the representation.
- Retrain the linear classifier with class-balanced sampling

#### II. Tau-Normalization (**τ**-Norm)

- $\Box$  Adjust the classifier weight norms directly.  $\widetilde{w_i} = \frac{w_i}{||w_i||^\tau}$
- Tau is "temperature" of the normalization.

#### III. Learnable Weight Scaling (LWS)

□ Tune the scale of each weight vector  $\widetilde{w_i} = f_i * w_i$ , where  $f_i = \frac{1}{||w_i||^{\tau}}$ 

### **Classifier Rebalancing**



- Without classifier rebalancing (i.e. Joint training), progressively-balanced sampling works best - When instance-balanced sampling is used and classifiers are re-balanced, medium-shot, and fewshot performance increases significantly, and achieve best results

### How Does Classifier Rebalancing Work?



- Larger weights ==> Wider classification cone
- Un-normalized weights ==> Unbalanced decision boundaries
- Classifier rebalancing ==> More balanced decision boundaries

### Can we finetune both trunk and classifier?

Table 1: Retraining/finetuning different parts of a ResNeXt-50 model on ImageNet-LT. B: backbone; C: classifier; LB: last block.

| Re-train             | Many | Medium | Few  | All  |
|----------------------|------|--------|------|------|
| B+C                  | 55.4 | 45.3   | 24.5 | 46.3 |
| $B+C(0.1 \times lr)$ | 61.9 | 45.6   | 22.8 | 48.8 |
| LB+C                 | 61.4 | 45.8   | 24.5 | 48.9 |
| С                    | 61.5 | 46.2   | 27.0 | 49.5 |

• The best performance is achieved when only classifier is retrained, and backbone model is fixed.

## **Experiments**

### Datasets

#### I. ImageNet\_LT

□ Constructed from ImageNet 2012

□ 1000 categories, 115.8k images

#### II. iNaturalist 2018

- □ Contains only species.
- □ 8142 categories, 437.5k images

#### III. Places\_LT

- □ Constructed from Places365
- 365 classes

### **Experiments**

### Datasets

#### I. ImageNet\_LT

- □ Constructed from ImageNet 2012
- □ 1000 categories, 115.8k images



- From joint to LWS/cRT/tau-norm, with little sacrifice on many shot
- New SOTA can be achieved
- Improvement on Medium: ~10, few: 20+

| Classifier    | Many        | Medium Few  |             | All         |
|---------------|-------------|-------------|-------------|-------------|
| OLTR          | 43.2        | 35.1        | 18.5        | 35.6        |
| OLTR(rerun)   | 40.7        | 33.3        | 18.1        | 34.1        |
| Joint         | <b>65.9</b> | 37.5        | 7.7         | 44.4        |
| NCM           | 56.6        | 45.3        | 28.1        | 47.3        |
| cRT           | 61.8        | 46.2        | 27.4        | 49.6        |
| au-normalized | 59.1        | 46.9        | <b>30.7</b> | 49.4        |
| LWS           | 60.2        | <b>47.2</b> | 30.3        | <b>49.9</b> |

## Experiments

### Datasets

#### II. iNaturalist 2018

- □ Contains only species.
- □ 8142 categories, 437.5k images



- From joint to cRT/tau-norm, little sacrifice on head classes, Large gain on tail classes.
- Once representation is sufficiently trained, New SOTA can be easily obtained.

| Classifier    | Many              | Medium            | Few               | All               |
|---------------|-------------------|-------------------|-------------------|-------------------|
| CB-Focal      | -                 | -                 | -                 | 61.1              |
| LDAM          | -                 | -                 | -                 | 64.6              |
| LDAM+DRAW     | -                 | -                 | -                 | 68.0              |
| Joint         | 72.2 <b>/75.7</b> | 63.0/66.9         | 57.2/61.7         | 61.7/65.8         |
| NCM           | 55.5/61.0         | 57.9/63.5         | 59.3/63.6         | 58.2/63.1         |
| cRT           | 69.0/73.2         | 66.0/68.8         | 63.2/66.1         | 65.2/68.2         |
| au-normalized | 65.6/71.1         | 65.3 <b>/68.9</b> | 65.9 <b>/69.3</b> | 65.6 <b>/69.3</b> |

\* Notation: 90 epochs/200 epochs

### Take home messages

- For solving long-tailed recognition problem, representation and classifiers should be considered separately.
- Our methods achieve performance gain by finding a better tradeoff (currently the best one) between head and tail classes.
- Future research might be focusing more on improving representation quality.



https://github.com/facebookresearch/classifier-balancing