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Mapillary is the street-level imagery platform
that scales and automates mapping
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Anyone with Any Camera, Anywhere
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Phone Action cam Dash Cam Vehicle Sensor Pro Rig

1b+ images, >10 million road km mapped




I Alcatrazlsiand
Goldieh Gate

o

R

) Presidio Py

Presidio

Golden Gate P
T L]
|

ERE: £ Bzl i \ %
o 2] { L5 L Finkiaat
(O e BT | Ul C8\
i > y ) BSTHHUF
| — S A
T e 1CanySt \ tﬁ
! { !
f n ty

>

t scale from street-level imagery
Lake Merced/Park :l' ‘7 : N il idiar- ; = / 5 ¥ /1 = gi)"'"l’.;’f >

%,
A

ort Funstoriy

Olympic Club r/




/,,‘



Schematic Data Lifecycle
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Strong Dependence on Recognition Algorithms
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Research @ Mapillary



Meet the Team!

e
Lorenzo

Aleksander



S

Mapillary Data Playground



The Mapillary Vistas Dataset
for Semantic Understanding of Street Scenes

G. Neuhold, T. Ollmann, S. Rota Bulo, P. Kontschieder. (ICCV 2017)
Mapillary Research




Labeled instances per category
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Wide variety of camera sensors, focal lengths
image aspect ratios and types of camera noise
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Various weather conditions and capture times

Image count
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Selected projects in this talk:

Single Image Depth Estimation
Multi-Object Tracking and Segmentation
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Mapillary Planet Scale Depth Dataset
(MPSD)



MPSD in a nutshell

A scalable way to create metrically accurate depth training data, suitable for
real-world applications, and that is

=?» larger, more complex and has diverse environments from around the world

=» comprising many camera types, focal lengths and distortion characteristics
=» containing diverse data for weather, time of day, viewpoint, motion blur, ...




MPSD Data Selection Constraints

Dense sampling available (at
most 5m and <30° camera turning
angle between frames)
Cumulative trajectory of >70° for
better constraining focal length
Camera parameters are
determined by iteratively running
OpenSfM per sequence

Same camera make, model,
resolution and focal length data
are assigned same parameters

10 reconstructions per camera
before final set is hand-picked




Geographic data distribution

-» Sampling from regular grid (156 km?)
=» 250 camera models in final dataset
=» 750k images with depth training data

Data Distribution
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Obtaining metric scale and dense depth
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Cost term proportional to squared distance between (noisy) GPS and
estimated camera positions removes scale ambiguity

Remove outliers due to short sequences and compact reconstructions by
filtering (two most distant, resulting camera positions = 20m)

Run patch-match multi-view stereo [Shen, 2013], i.e. a winner-takes-all
approach based on normalized cross-correlation on depth & normals for
corresponding pixels in adjacent images




Filtering dense depth

=» Patch-match stereo algorithm may contain spurious results
=» Cleanup based on consistency checks among three neighboring images

Candidate image Covisibility

PatchMatch result Final, cleaned depth




Dataset overview

Dataset n. Images Source Extent Metric
Make3D [24] 534 Lidar Palo Alto yes
iBims-1 [15] 100 Lidar ~ Various scenes  yes
DIODE [29] 26 k  Lidar 25 Scenes yes
KITTT [11] 94 k  Lidar Karlsruhe yes
WSVD [30] 1.5M  Stereo Tk videos no
Cityscapes [7] 25k  Stereo 50 Cities yes
MegaDepth [17] 130k  SfM 200 Scenes no
MPSD 750 k StM 50k Scenes yes

Comparison of available depth datasets with MPSD

KITTI . DIODE . Make3D

Distributions of volume-normalized depth (m) for several datasets



Training with multiple cameras

=» Learning to predict absolute depth from a highly heterogeneous set of
cameras negatively affects performance and impacts generalization
=» Focal length normalization with per-pixel consideration (3" = 1)

object depth | — Y
/o

focal length

object size in image plane [pix]

real object size [m]

L & W



Camera normalization

We apply canonical camera model normalization and resize images by imposing

e Fixed focal length
e Square pixel sensor
e No radial distortion

Example: At a focal length of 720px, a real-world object with height 2m, the
estimated depth is inversely proportional to the object size y’n the image.

g = T720%2/y

Network “only” needs to learn real-world sizes of objects!



Experimental setup
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UNet architecture (ResNet-50 based)

Dilation rates (1,1,2,4) and output stride x16

InPlace-ABN to reduce training memory footprint
DeepLabV3 head (12, 24, 36 dilation rates) + global feature

e Upsampling to original input resolution in 3 stages
e Concatenated with size-matching features from encoder
e Skip-module (CONV+ACT)

Final bilinear x2 upsampling
Input size always fixed to 1216x352 @ batch size 64 (8 x V100, 32GB)
Predicting log of focal-length normalized depth using Eigen-Loss

L(z,z*, f) = ZdZ——<Zd>

d; = log(z) —log(z*)



Experimental results
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Training set
MD-Ordinal
MegaDepth
MegaDepth
MegaDepth
MegaDepth
mini MPSD
MPSD
MPSD
MPSD

MPSD+KITTI

Strategy

Scale Crop

Naive
CC
CC
FF
FF
FF
CC

FF+C
FF

QIE Q& QNG O S CHRs

KITTI
SILog rmse
30.1 -
25.61 -
26.92 -
23.79 -
26.79 -
14.89 4.87
12.77 4.21
13.33 4.13
12.8 4.39
9.23* 3.04*

SILog
10.8
11.86
10.67
11.51
9.96*
17.85
14.68
21.5
14.04
32.23

SILog rmse SlLog

35.19
65.11
62.92
60.08
36.73

47.52
42.91
50.3
47.28
48.28

22.61 9.05 44.43
19.77 7.91 42.2
34.83 12.77 43.04
19.52 8.13 41.69
27.11 8.58 45.55

MegaDepth Cityscapes DIODE (outdoor)

rmse

Make3D

SlLog rmse
38.2 -

59.89 -

54.24 -

595.9 -

41.64 -

29.55 5.99
27.49 5.54
54.66 59.45
28.07 5.67
37.56 6.49




Prediction results on dynamic objects

Network trained on MPSD and tested on (previously unseen) KITTI data

Training set(s) |Static/Dynamic
MegaDepth 93.04 | 117.98
MPSD 4.16 5.16
MegaDepth+KITTI| 3.74 4.29
MPSD+KITTI 3.12 3.52 RMSE on KITTI validation




KITTI Depth prediction results

State-of-the-art on KITTI test data for 7 months!

Rank| Method |SILog|sqErrorRel|absErrorReliRMSE
1 MPSD 11.12| 2.07% 8.99 % 11.56
2 | GSM (Anon.) | 11.23 2.18 % 8.88 % 12.65
3 | GSM (Anon.) | 11.56 2.25 % 8.99 % 12.44
4 | LCI (Anon.) | 11.63 2.20 % 9.07 % 12.42
5 BTS [16] 1167 2.21 % 9.04 % 12.23
6 |AcED (Anon.)| 11.70 2.45 % 9.54 % 12.51
7 DORN [10] | 11.77 2.23 % 8.78 % 12.98




Metric depth accuracy validation

Estimated least-square scale correction to describe depth scale bias for network
exclusively trained on MPSD and tested on Cityscapes, KITTI, Make3D

1.50
H
1.25 - T 1 _
1.03 , 1.01
1.00+ — e _— — —
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D.75 = -
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Cityscapes KITTI Make3D



Depth estimation in the wild



https://docs.google.com/file/d/1iel5aBpRgioHjrJzcs-KzkGkZmzt61Sq/preview
https://docs.google.com/file/d/1dONuo9qKQoDcpSQYlrM1Hb2SkMEXL0fr/preview
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Learning Multi-Object Tracking and
Segmentation from Automatic Annotations
[CVPR 2020]



Overview

Joining multi-object tracking and instance segmentation brings mutual benefits,
but ground truth data is rare and expensive to annotate

Main contributions:

=» Completely automated generation of multi-object tracking and
segmentation (MOTS) annotations from street-level videos

=» MOTSNet: a multi-object tracking and segmentation network using a novel
“Mask-Pooling” layer to achieve SOTA results on multiple benchmarks



Automatic generation of MOTS annotations

=» A Panoptic Segmentation network trained on Mapillary Vistas extracts object
segmentations from the input videos

=» Anoptical flow network trained on SfM-generated annotations predicts
optical flow on the input videos

=» Detected objects are matched across frames by tracking their motion based
on the predicted optical flow

No human intervention needed!




Why trust machine-generated segmentations



https://docs.google.com/file/d/1XIByC9Z_ujAkSoZ0bytmN4ZkONMMEdE4/preview

Optical Flow - Introduction

Apparent 2D motion of pixels in image pair
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Camera and objects can move




Comparison to Structure-from-Motion

Optical Flow

->
->

-

Complementary use cases!

Works with static cameras
Establishes dense point-wise
correspondences

Usually from two consecutive
images in a video (while there
exist multi-frame methods)
Can handle dynamic objects in
scenes up to certain extent

SfM

=» Requires moving cameras

=» Establishes sparse point-wise
correspondences

=» Usually based on multiple
images

=» Usually gets distracted by
dynamic objects in scene



Single-Slide Recap of Optical Flow

FlowNet:

FlowNetSimple

PWC-Net

Feature Feature + Upsampled flo
pyramid 1 pyramid 2 il
o

Warping layer
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Cost volume layer l
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Optical flow estimator
Refined flow +

‘ «——i  Context network
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Training data for optical flow networks?

Y 1
Filtering dense depth L’\—
-  Patch-match stereo algorithm may contain spurious results Cleaned COVISIbIlIty mapS can alSO be

- Cleanup based on consistency checks among three neighboring images . L

used to generate optical flow training
data, i.e. we can exploit feature
correspondences from multiple views
to derive (sparse) flow data.

Candidateimage Covisibility

PatchMatch result Final, cleaned depth

Leads to pairs of images with sparse flow information from matched points!

by &



Training data for tracking task?

Inductive generation of tracklets per object fe

§ € S;_1 segmentinframe t —1
S € St segmentin frame ¢ ore

Payoff for linear assignment:
" S .
m(8,5) =IoU(¢s, ps 0 f+)+n(5,s) n(3,s) € {~00,0}

n(s,s) Encodesadditional constraints like matching of segment class labels,
minimal overlap checks, loU differences for largest and second-largest
segments, etc. e



MOTSNet

=» Mask R-CNN based architecture with an additional Tracking Head (TH)
=» The TH maps detected objects to a learned embedding space for tracking

ResNet-50 e g

):
i Masks

Tracking Head



Tracking Head and Mask Pooling

Tracking Head

=» Pool features under the instance
segmentation masks
=» Process with FC layers to

Fully Connected Layers

Mask Pooling

compute embedding vectors
=» Compare embedding vectors
across frames to match objects




Training and Inference

-

Tracking-head optimization based on hard triplet loss [Hermans et al., 2017],

learning to generate object-specific embedding vectors that are similar for
matching and dissimilar for non-matching objects.

Inference based on embeddings, but similar to training tracklet generation

Cars




Experimental Setup

Evaluation on KITTI MOTS, MOTSChallenge (MOTS ground truth available)
[Voigtlander et al., CVPR 2019] and BDD100k tracking data (bounding box tracking
information available)

ResNet-50 backbone in all our experiments
Evaluation on KITTI MOTS:

- Quality assessment of dataset generation (KITTI Synth)
- MOTSNet ablation and evaluation



KITTI Synth Experiments

Generated training data from KITTI Raw (142 sequences, excluding validation set
of KITTI MOTS), yields 1.25M object segments in ~44k images

sMOTSA MOTSA MOTSP mAP
Method Pre-training Car Ped Car Ped Car Ped | Box Mask

KITTI Synth (val) + HD? [49] model zoo | inference only | 654 457 773 663 87.6 76.6 - -
KITTI Synth (val) + HD?, KITTI-SfM inference only | 65.5 454 774 660 87.6 76.6 | - -

MOTSNet with:

AVEBOX+TH I 73.7 464 858 628 86.7 76.7 | 574 509
AVEMSK-TH | 764 440 885 603 868 766 | 578 513
AVEBOX-TH I 754 445 873 60.8 869 76.7 | 575 51.0
KITTI MOTS train sequences only I 72.6 45.1 849 629 86.1 756 | 525 47.6




Results on KITTI MOTS validation data

sMOTSA MOTSA MOTSP mAP
Method Pre-training | Car Ped Car Ped Car Ped | Box Mask

TrackR-CNN LCM 76.2 47.1 87.8 655 872 757 - -

CAMOT I,C,M 674 395 786 576 86.5 73.1 - -
CIWT I,C,M 68.1 429 794 61.0 86.7 75.7 - -
BeyondPixels LC,M 76.9 - 89.7 - 86.5 - -~ -
I 69.0 454 787 61.8 88.0 765|552 493
MOTSNet I, M 749 53.1 839 678 894 794 | 60.8 54.9

I, KS 76.4 48.1 86.2 643 887 772|597 533




Results on MOTSChallenge

Method | Pre-training | sSMOTSA  MOTSA MOTSP
TrackR-CNN [7] | L C,M 5257 66.9 80.2
MHT-DAM [4] LC,M 48.0 62.7 79.8
FWT [2] LC,M 49.3 64.0 79.7
MOTDT [5] LC,M 47.8 61.1 80.0
iCC3] LC,M 48.3 63.0 79.9

I 41.8 5512 78.4
MOTSNet e 56.8 69.4 827




Results on KITTI MOTS / BDD100k



https://docs.google.com/file/d/1JTSVV7txOy2JIuGeN0YpskUJ-T-IJ0VJ/preview

More Results



https://docs.google.com/file/d/1LZ7PJA_8-4XjP4kST6501J2dyccOV5Pv/preview
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Drop by our virtual presentation at Poster
Learning Multi-Object Tracking and Session 2.2 for more information!

Segmentation from Automatic
Annotations

Coot. on Compater Yision and Pattern Recogaition

PR} 2020 { June, 2023

RS Date: Wednesday, June 17 & Thursday, June 18 2020
Q&A Time: 1200-1400 and 0000-0200

By Lommza Morzl, Markus Mafinger, idota iz, Joan Sam,

Abstract Session: Poster 2.2 — Face, Gesture, and Body Pose; Motion and Tracking;

In this work we contribute a novel pipetine to automatically generata training data, and to improwve . .

over state-ok-the-art multi-object tracking and segnientation {MOTS| methods. Qur proposed track Re prese ntation Learnin g

mining algorithm tums raw street-level videos inta high-fidelity MOTS training data, is scalable ang

overcomes the need of expensive and time-consuming manual snnatation approaches. We leverage H H . . ( 1fi H [ H ] )
e b il il ot eedicions; i Presentation times 12:00 and 00:00 (Pacific Time Zone [Seattle time

trained on autamatically harvested training data. Our second mijor contribution is MOTSNet - a deep

leatning, tracking by detection architecturs for MOTS - deploying a novel mask-pocling layer for

improved object association aver time. Training MOTSNet with our automstically extracted data leads

to significantly improved sMOTSA sccres on the novel KITTIMOTS dataset (+1.9%/47.5% on

cars/podestrians), and MOTSNet improves by +4.13% over peeviousdy best methods an the ID 5452

MOTSChallenge dataset. Our most impressive finding i< that we can improve aver previous best

perorming works, evan in complete absance of manuaily annotated MOTS training data




Summary

->

->

-

Using less supervision, we obtain state-of-the-art results for
e Single-Image depth estimation
e Multi-object tracking and segmentation

Mapillary-scale data for learning single-image depth estimation, extracted from
multiple cameras and all around the globe, using SfM

SOTA recognition algorithms for automatically mining training data is beneficial
for MOTS. Even possible to outperform methods based on manually annotated

data



Let’s create
something amazing
together!

@mapillary
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