Learning 3D object models from 2D images

Learning from Imperfect Data Workshop

lasonas Kokkinos

Ariel AI

G. Papandreou

R. A. Guler

B. Fulkerson

S. Zafeiriou

E. Schmitt

H. Wang

D. Kulon

P. Koutras

E. Skordos

S. Galanakis

D. Stoddard

H. Tam

A. Lazarou

UCL, Imperial College, FAIR, INRIA, Stony Brook

M. Bronstein **Imperial College**

Natalia Neverova FAIR

Z. Shu Stony Brook

M. Sahasrabudhe **INRIA**

N. Paragios **INRIA**

D. Samaras **Stony Brook**

A. Kakolyris

Input Image

Image Classification

Is there a person in this image? Yes? No?

Image Classification

Input Image

Person Detection

Localize persons in the image.

Person Detection

Input Image

Part Segmentation

Segment semantically meaningful body parts.

Image Classification

Person Detection

Part Segmentation

Input Image

Pose Estimation

Localize joints of the persons in the images.

Input Image

Dense Pose Estimation

Find correspondence between all pixels and a 3D model.

Holy grail: 3D human reconstruction

"Wide Open" (The Mill, 2015)

Ariel AI: 3D human reconstruction on mobile

Ariel AI: 3D human reconstruction on mobile

Seamless augmented reality

Universal motion capture

Holographic telepresence

Immersive gaming

Personalised, experiential retail

Kinetic learning

Challenges

Depth/height ambiguity

3D from 2D: fundamentally ill-posed problem

Scarce 3D supervision – almost impossible in-the-wild

From imperfect vision to imperfect data

Computer Vision before deep learning:

- Your `local evidence' is imperfect (classifier scores, unary terms, ..)
- Compensate for it by model-based prior during inference (AAMs, MRFs,..)

Computer Vision after deep learning:

- Your `local evidence' can become perfect
- Your training data is imperfect
- Compensate for it by some model-based prior, prior or during training

Imperfect Data for Semantic Segmentation

Bounding boxes + occupancy priors

"Weakly- and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image Segmentation" George Papandreou, Liang-Chieh Chen, Kevin P. Murphy, Alan L. Yuille, ICCV 2015

Imperfect Data for Instance Segmentation

4 points + segmentation system

Deep Extreme Cut: From Extreme Points to Object Segmentation, Kevis-Kokitsi Maninis, Sergi Caelles, Jordi Pont-Tuset, Luc Van Gool

Imperfect Data for Pose Estimation

Unlabeled Frame B (time t+ δ)

Keypoints + temporal correspondence

Learning Temporal Pose Estimation from Sparsely Labeled Videos, Bertasius, Gedas and Feichtenhofer, Christoph, and Tran, Du and Shi, Jianbo, and Torresani, Lorenzo(NeurIPS 2019)

Part 1: Weakly- and semi- supervised learning for 3D

HoloPose: Holistic 3D Human Reconstruction In-the-Wild, A. Guler and I. Kokkinos, CVPR 2019 Weakly-Supervised Mesh-Convolutional Hand Reconstruction in the Wild, D. Kulon et al CVPR 2020

Part 2: Fully unsupervised learning for 3D

Unstructured face dataset

Lifting AutoEncoders: Unsupervised Learning of 3D Morphable Models Using Deep Non-Rigid Structure from Motion, M. Sahasrabudhe, Z. Shu, E. Bartrum, A. Guler, D. Samaras and I. Kokkinos, ICCV GMDL 2019

DenseReg: From Image to Template to Task

R. A. Guler, G. Trigeorgis, E. Antonakos, P. Snape, S. Zafeiriou, I. Kokkinos, DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild, CVPR 2017

DenseReg, Frame-by-Frame

Supervision: from parametric model fitting to 2D keypoints

Annotation effort: a few 2D landmarks per image Density: morphable model prior

DensePose: dense image-to-body correspondence

DensePose-RCNN Results

DensePose COCO Dataset

DensePose-RCNN: ~25 FPS

http://densepose.org/

R. A. Guler, N. Neverova, I. Kokkinos "DensePose: Dense Human Pose Estimation In The Wild", CVPR'18

Annotation pipeline-II

Surface Correspondence

DensePose-COCO dataset

densepose.org

U coordinates

V coordinates

Image

DensePose-RCNN in action

HoloPose: multi-person 3D reconstruction results

R. A. Guler, I. Kokkinos "HoloPose: Holistic 3D Human Reconstruction In The Wild", CVPR'19

Surface-level human understanding, CVPR 2018

Dense UV coordinate regression

SMPL parameter regression

DensePose: Dense Human Pose Estimation In The Wild, CVPR 2018 R. A. Güler, N. Neverova, I. Kokkinos,

Robust & accurate, "in-the-wild" Not 3D

End-to-ena kecovery of Human Shape and Pose, CVPR 2018
A. Kanazawa M. J Black D. W. Jacobs J. Malik
Learning to Estimate 3D Human Pose and Shape from a Single Image, CVPR 2018
G. Pavlakos, L. Zhu, X. Zhou, K. Daniilidis
Monocular 3D Pose and Shape Estimation of Multiple People, CVPR 2018, Andrei Zanfir, Elisabeta Marinoiu, Cristian Sminchisescu

> Parametric and 3D Alignment

Bottom-up human body reconstruction

θ

Bottom-up 2D Keypoint localization

Part-Based 3D Reconstruction

θ

2D Keypoints

 $L_{2d}(\theta)$

Bottom-up/Top-down Synergistic Refinement

Synergistic Refinement

Before/After Refinement

 $\theta, \theta^* = \theta$

Final Result

 $\theta^* = \underset{\theta}{\operatorname{argmin}} L_{total}(\theta)$

3D Pose Estimation Results

Human 3.6m Dataset

Method	PA MPJPE	MPJPE
HMR	56.8	87.97
Ours	50.56	64.28
Ours+ Synergy	46.52	60.27

Ours

HMR Kanazawa et al. CVPR 2018 Part-Based 3D Reconstruction

Ours **Synergistic Refinement**

Ariel Holopose 2019

• In-the-wild human 3D reconstruction

Ariel Holopose 2020

Weakly-Supervised Mesh-Convolutional Hand Reconstruction in the Wild

Dominik Kulon

Riza Alp Güler

lasonas Kokkinos

Michael Bronstein

Stefanos Zafeiriou

arielai.com/mesh_hands

Oral, CVPR 2020

Poster, Fourth Workshop on Computer Vision for AR/VR

Motivation - hand pose estimation

youtu.be/aQ4shIsQabo

• Broad array of applications:

- human-computer interaction
- augmented reality
- virtual telepresence
- sign language recognition

• Existing approaches do not always:

- Generalize to non-laboratory environments.
- Provide full mesh reconstruction.
- Operate in real time.

Image Encoding

Mesh Reconstruction

Predicted Landmarks

Weak Supervision

End-to-End Training

Parametric Hand Model Fitting

$$\{\beta^*, w^*, \vec{T}^*_{\delta}, s^*\} = \arg\min_{\beta, w, \vec{T}_{\delta}, s} (E_{2D} + E_{bone} + E_{reg})$$

• 2D Reprojection Term

Minimizes the distance between 2D joints.

• Bone Length Preservation Term

Ensures that the length of each edge in the hand skeleton tree is preserved.

• Regularization Term

Penalizes deviations from the mean pose.

• K-Means Prior

We constrain joint angles to lie in the convex hull of pre-computed cluster centers.

Novel Dataset

We release a dataset of meshes aligned with in the wild images.

- Training set: 102 videos.
- Validation and test sets: 7 videos.
- Hundreds of subjects.
- 50K samples.

Evaluation - standard benchmarks

We also obtain state-of-the-art performance on popular laboratory datasets.

- Rendered Handpose Dataset (RHD)

- FreiHAND

Method (synthetic, 3D)	RHD (AUC)	Mesh	Speed (FPS)
Zimm. and Brox (2017)	0.675		
Yang and Yao (2019)	0.849		
Spurr et al. (2018)	0.849		
Zhou et al. (2020)	0.856		100 (GPU)
Cai et al. (2018)	0.887		
Zhang et al. (2019)	0.901		
Ge et al. (2019)	0.92		50 (GPU)
Baek et al. (2019)	0.926		
Yang et al. (2019)	0.943		
Ours	0.956		70 (GPU)

Evaluation - in the wild

We largely outperform other approaches on an in the wild benchmark.

MPII+NZSL Dataset

Ariel A

Egocentric Perspective

Part 2: Lifting AutoEncoders: Unsupervised 2D-to-3D

Unstructured face dataset

Lifting AutoEncoders: Unsupervised Learning of 3D Morphable Models Using Deep Non-Rigid Structure from Motion, M. Sahasrabudhe, Z. Shu, E. Bartrum, A. Guler, D. Samaras and I. Kokkinos, Arxiv 2019

Unsupervised learning of deformable models

Learning a template and the deformation for a class of images.

A class of images (MNIST 3)

Unsupervised learning of deformable models

Goal: learn a template and the deformation for a class of images.

A class of images (Faces)

Deforming AutoEncoder (DAE) model

Z. Zhu, M. Saha, A. Guler, D. Samaras, I. Kokkinos, Deforming Autoencoders: Unsupervised Shape and Appearance Disentangling, ECCV 2018

DAE for MNIST: single-class template

decoded deformation

DAE for Faces-in-the-Wild

input

decoded texture

reconstruction

DAE-based unsupervised face alignment

Unsupervised alignment with DAE on MAFL dataset

Goal: learn a 3D model from unstructured image set

Unstructured face dataset

Pin 4 Provide of and Df. from (from the triat dealers) (from 5 minut) Franchis (Latino 5 minut) 84-1.

3D Reconstruction: Structure-from-Motion

Assumption: Rigid Scene Input: Point Correspondences (e.g. through SIFT & Ransac)

Methods: Factorization, Bundle Adjustment

Noah Snavely, Steven M. Seitz, Richard Szeliski. Modeling the World from Internet Photo Collections. IJCV, 2007. Yasutaka Furukawa and Jean Ponce, Accurate, Dense, and Robust Multi-View Stereopsis, CVPR 2007

3D Reconstruction: Non-Rigid Structure-from-Motion

https://www.youtube.com/watch?v=35wCPFyS3QQ

Non-Rigid Structure-From-Motion: Estimating Shape and Motion with Hierarchical Priors, Bregler et al, PAMI 2008 Dense Reconstruction of Non-Rigid Surfaces from Monocular Video, Garg et al, CVPR 2013

DAEs: Turn Images to Corresponding Sets of Points

Lifting AutoEncoder: NRSfM with DAEs

Non-Rigid Structure-from-Motion

Lifting AutoEncoder: NRSfM with DAEs

Deforming AutoEncoder

Lifting Auto-Encoders: end-to-end 3D generative model

Lifting AutoEncoders: Unsupervised Learning of a Fully-Disentangled 3D Morphable M§odel

Controllable image modification using LAEs

Pose modification

Lifting AutoEncoders: Unsupervised Learning of Fully-Disentangled 3D Morphable model

Controllable image modification using LAEs

Pose modification

Expression modification

Lifting AutoEncoders: Unsupervised Learning of Fully-Disentangled 3D Morphable model

Controllable image modification using LAEs

Pose modification

Expression modification

Lifting AutoEncoders: Unsupervised Learning of Fully-Disentangled 3D Morphable model

Controllable image modification using LAEs

Pose modification

Expression modification

Illumination modification

Part 1: Weakly- and semi- supervised learning for 3D

HoloPose: Holistic 3D Human Reconstruction In-the-Wild, A. Guler and I. Kokkinos, CVPR 2019 Weakly-Supervised Mesh-Convolutional Hand Reconstruction in the Wild, D. Kulon et al CVPR 2020

Part 2: Fully unsupervised learning for 3D

Unstructured face dataset

Lifting AutoEncoders: Unsupervised Learning of 3D Morphable Models Using Deep Non-Rigid Structure from Motion, M. Sahasrabudhe, Z. Shu, E. Bartrum, A. Guler, D. Samaras and I. Kokkinos, ICCV GMDL 2019

Thank you!

arielai.com/mesh_hands

Ariel A

R. A. Guler

P. Koutras

E. Skordos

S. Galanakis

S. Zafeiriou

A. Kakolyris

M. Sahasrabudhe

E. Schmitt

H. Wang

D. Kulon

A. Lazarou

M. Bronstein Natalia Neverova **Imperial College** FAIR

Z. Shu Stony Brook

INRIA

E. Bartrum UCL

N. Paragios **INRIA**

D. Samaras **Stony Brook**

