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o Weakly Supervised Object Localization (WSOL)

o WSOL is understanding an image at pixel level only using image-level
annotations

o use much cheaper annotations
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WSOL

o Steps of previous works :
o Force classification network to focus on more regions of feature map.
o Produce localization map on the last convolutional layer by applying CAM.
o Problem:
o ignore the localization ability of other layers.
o Both localization and classification tasks are

trained online | can produce WSOL,D
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Dual-Gradients Localization(DGL) framework

o Main ideas:

o Utilize gradients of classification loss function to mine entire target object regions.

o Leverage gradients of target class to identify the correlation ratio of pixels to the target
class within any convolutional feature maps

o Characteristics

o Simple, DGL is a offline approach,
needn’t to train for localization.

o Effective, achieving localization on
any convolutional layer.
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Overview of the DGL framework
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Classification model
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o Classification model architecture:
o use a customized InceptionV3, i.e. SPG-plain.

o remove the layers after the second Inception block, i.e., the third Inception
block, pooling and linear layer.

o add two convolutional layers

o add a GAP layer and a softmax layer
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Class-aware Enhanced Map Branch

o feature maps predicted to class c only capture the discrimination parts of objects,
when the feature maps close the boundary of classification regions

o the feature maps located at center of classification regions can highlight more object
regions
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Class-aware Enhanced Map Branch

o our key idea of Class-aware Enhanced Map is pulling the feature maps toward
inside of the classification region for specific-class, along with gradients of
classification loss function.
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Class-aware Enhanced Map Branch
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Pixel-level Selection Branch

o Is gradients or weights?

o CAM actually achieves localization by employing a weighted sum of
feature maps and gradients of target class on the last convolutional

layer, instead of weights of the final FC layer.

o Pixel-level Selection is a generalization to CAM. D

sum and reSlze
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Results on the Validation Set of LID

MS: Multi-scale inputs during test
MC: Morph close the localization map during test

MS MC mloU
X X 58.23
v X 61.46
v v 62.22

o Fusion the localization maps of branch1 and branch2 on Mixed_6e layer.
o Input size 324
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Qualitative Results

o Examples of DGL on test set
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