

The 2nd Learning from Imperfect Data (LID) Workshop

Revisiting Class Activation Mapping for Learning from Imperfect Data

Wonho Bae*, Junhyug Noh*, Jinhwan Seo, and Gunhee Kim

Challenge Results

1st place

Track 3: Weakly Supervised Object Localization

2nd place

Track 1: Weakly Supervised Semantic Segmentation

Weakly-Supervised Object Localization

Input

Output

Class Activation Mapping (CAM)

Class Activation Mapping (CAM)

Class Activation Mapping (CAM) for Track 3

How to Grasp Whole Object Region?

GAP

Classifi

[HaS] Singh, et al. ICCV 2017

ackbone

Θ Erasing 1

Thresholding

[AE] Wei, et al. CVPR 2017

[ACoL] Zhang, et al. CVPR 2018

Classifier 8

7 [ADL] Choe, et al. CVPR 2019

Our Approach

- Motivation
 - Information to capture the whole area of the object already exists in feature maps
- Problem
 - Three modules (M1–M3) of CAM do not take phenomena (P1–P3) into account
 - It results in the localization being limited to small discriminative regions of an object
- Solution
 - Correctly utilize the information by simply modifying the three modules

• **Problem**: Global Average Pooling (GAP) under P1

$$p_c^{\text{gap}} = \frac{1}{H \times W} \sum_{(h,w)} \mathbf{F}_c(h,w)$$

Phenomena observed in the feature map (F)

• **Problem**: Global Average Pooling (GAP) under P1

• **Problem**: Global Average Pooling (GAP) under P1

Classification phase

Localization phase

• **Problem**: Global Average Pooling (GAP) under P1

$$p_c^{\text{gap}} = \frac{1}{H \times W} \sum_{(h,w)} \mathbf{F}_c(h,w)$$

• Solution: Thresholded Average Pooling (TAP)

$$p_c^{\text{tap}} = \frac{\sum_{(h,w)} \mathbb{1}(\mathbf{F}_c(h,w) > \tau_{tap})\mathbf{F}_c(h,w)}{\sum_{(h,w)} \mathbb{1}(\mathbf{F}_c(h,w) > \tau_{tap})}$$

• **Problem**: Class Activation Maps **(CAM)** under **P2**

$$\mathbf{M}_k = \sum_{c=1}^C w_{c,k} \cdot \mathbf{F}_c$$

Phenomena observed in the feature map (F)

• **Problem**: Class Activation Maps **(CAM)** under **P2**

• **Problem**: Class Activation Maps **(CAM)** under **P2**

IoA between the ground truth boxes and the CAMs

• **Problem**: Class Activation Maps **(CAM)** under **P2**

$$\mathbf{M}_k = \sum_{c=1}^C w_{c,k} \cdot \mathbf{F}_c$$

• Solution: Negative Weight Clamping (NWC)

$$\mathbf{M}_{k} = \sum_{c=1}^{C} \mathbb{1}(w_{c,k} > 0) \cdot w_{c,k} \cdot \mathbf{F}_{c}$$

Our Approach (3) Percentile as a Thresholding Standard

• **Problem:** Maximum as a Standard (MaS) under P3

$$\tau_{loc} = \theta_{loc} \cdot \max \mathbf{M}'_k$$

Our Approach (3) Percentile as a Thresholding Standard

• **Problem:** Maximum as a Standard **(MaS)** under **P3**

Our Approach (3) Percentile as a Thresholding Standard

• **Problem:** Maximum as a Standard **(MaS)** under **P3**

$$\tau_{loc} = \theta_{loc} \cdot \max \mathbf{M}'_k$$

• Solution: Percentile as a Standard (PaS)

$$\tau_{loc} = \theta_{loc} \cdot \operatorname{per}_i(\mathbf{M}'_k)$$

Experimental Setting

- Backbone: ResNet50-SE
- Batch size: 210
- Input size: 384×384
- Random crop size: 336×336
- TAP threshold (τ_{tap}) : 0.05
- PaS percentile (*i*): 98

Results on Validation Set

• Results with different components

Method	CRF	PaS	NWC	TAP	Peak IoU
Baseline					0.5254
	\checkmark				0.5461
+ Ours	\checkmark	\checkmark			0.5563
	\checkmark	\checkmark	\checkmark		0.5881
	\checkmark	\checkmark	\checkmark	\checkmark	0.6370

- To preserve the details of masks, we also applied a fully connected CRF.
- The performance gradually improves as each component is added.

Leaderboard

• Track 3: Weakly Supervised Object Localization

Rank	Participant Team	Peak IoU
1	SNUVL (Ours)	0.63
2	BJTU-Mepro-MIC	0.62
3	LEAP Group@PCA Lab	0.61
4	$chohk \ (wsol_aug)$	0.53
5	TEN	0.48

Qualitative Results

Expansion to Track 1

Classes

Expansion to Track 1

Classes

Class Activation Mapping (CAM) for Track 1

Leaderboard

• Track 1: Weakly Supervised Semantic Segmentation

Rank	Participant Team	Mean IoU
1	cvl	45.18
2	SNUVL (Ours)	37.73
3	UCU & SoftServe	37.34
4	IOnlyHaveSevenDays	36.24
5	play-njupt	31.90

Thank You!