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Weakly-Supervised Object Localization
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Class Activation Mapping (CAM)
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Class Activation Mapping (CAM)
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Class Activation Mapping (CAM) for Track 3
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[HaS] Singh, et al. ICCV 2017 [AE]Wei, et al. CVPR 2017

[ACoL] Zhang, et al. CVPR 2018 [ADL] Choe, et al. CVPR 2019

How to Grasp Whole Object Region?

7



Our Approach
• Motivation

• Information to capture the whole area of the object already exists in feature maps

• Problem
• Three modules (M1–M3) of CAM do not take phenomena (P1–P3) into account

• It results in the localization being limited to small discriminative regions of an object

• Solution
• Correctly utilize the information by simply modifying the three modules
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Our Approach (1) Thresholded Average Pooling

• Problem: Global Average Pooling (GAP) under P1
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• Problem: Global Average Pooling (GAP) under P1

Our Approach (1) Thresholded Average Pooling
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• Problem: Global Average Pooling (GAP) under P1

Our Approach (1) Thresholded Average Pooling
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• Problem: Global Average Pooling (GAP) under P1

• Solution: Thresholded Average Pooling (TAP)

Our Approach (1) Thresholded Average Pooling
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• Problem: Class Activation Maps (CAM) under P2

!",$ ∗ + !',$ ∗ + !(,$ ∗ +⋯+ !*,$ ∗ =

+$," ,' ,( ,-

GAP …

!",$
!',$

!*,$
…

.:012345

6789

1 2 3 =⋯

,

M1: Global Average Pooling (GAP)

M2: Class Activation Maps (CAM)

CNN

+$
>

> @ABC

D$

M3: Thresholding

localization result

resize

Phenomena observed in the feature map (,)

P2:
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• Problem: Class Activation Maps (CAM) under P2

Our Approach (2) Negative Weight Clamping
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• Problem: Class Activation Maps (CAM) under P2

Our Approach (2) Negative Weight Clamping

IoA between the ground truth boxes and the CAMs
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• Problem: Class Activation Maps (CAM) under P2

• Solution: Negative Weight Clamping (NWC)

Our Approach (2) Negative Weight Clamping
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• Problem: Maximum as a Standard (MaS) under P3

Our Approach (3) Percentile as a Thresholding Standard
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• Problem: Maximum as a Standard (MaS) under P3

Our Approach (3) Percentile as a Thresholding Standard
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• Problem: Maximum as a Standard (MaS) under P3

• Solution: Percentile as a Standard (PaS)

Our Approach (3) Percentile as a Thresholding Standard
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Experimental Setting

• Backbone: ResNet50-SE

• Batch size: 210

• Input size: 384×384

• Random crop size: 336×336

• TAP threshold (𝜏!"#): 0.05

• PaS percentile (𝑖): 98
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Results on Validation Set

• Results with different components

• To preserve the details of masks, we also applied a fully connected CRF.

• The performance gradually improves as each component is added.
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Leaderboard
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• Track 3: Weakly Supervised Object Localization



Qualitative Results
CAM + Ours CAM + Ours CAM + Ours CAM + Ours



Expansion to Track 1
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Expansion to Track 1
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Our target!



Class Activation Mapping (CAM) for Track 1
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Leaderboard
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• Track 1: Weakly Supervised Semantic Segmentation



Thank You!


