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Contributions

A Discovery, A Pipeline, A Model and

 We identify the existence of a previously unknown statistical
phenomenon called uncertainty mixture.

* We propose a principled pipeline to harvest pseudo labels for pointly-
supervised scene parsing, without the need of threshold tuning.

* We contribute a novel regularized Gamma mixture model.
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We identify the fact uncertainty measures
(in the pointly-supervised scene parsing setting)
emerge as Gamma mixtures

In the DL era...
Does NN weights
naturally emerge as
mixture models?
Seems not.
Does NN features
naturally emerge as

mixture models?

Seems not.



Pointly-supervised Scene Parsing
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Pseudo Labels are noisy.
Harvesting pseudo labels with low uncertainty seems promising.
How to define ‘low’ uncertainty?



Category-wise uncertainty measures emerge
as a two-peak mlxture
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We claim the statistical phenomenon of uncertainty mixture exists as it is
ubiquitously observed in large-scale datasets in ADE and PascalContext.




Modelling: Gaussian or Gamma?
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LUC: Low-uncertainty component
HUC: High-uncertainty component

(1) Uncertainty measures are variance so
that they are always positive; Gamma
distribution support: (0,+ o)

(2) LUC is naturally peaked near zero
(just because it is the low
component); problematic for
Gaussian distribution

(3) HUC looks quite Gaussian? It is fine
because Gamma approaches Gaussian
when a grows to +oo



Pipeline: Harvesting LUC labels
and fine-tune the net.

(1) Train the first-round model using point supervision;
(2) Get pseudo labels and uncertainty measures on the training set;
(3) EM estimation for LUC and HUC, on a category-wise basis;

(4) Harvesting LUC labels;
(5) Finetune the first-round model.

A pipeline to harvest pseudo labels
without manual thresholding.
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A regularized Gamma mixture model
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Uncertainty Measures for Labeled Points

Idea: Assuming labelled points always belong to LUC
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Evaluation: Weakly-supervised learning

and Transductive inference

Ist-round | Gamma rGamma
22-layer 31.52 32.48 34.17
(+0.96) (+2.65)
54-layer 32.63 33.52 35.44
(+0.89) (+2.81)
105-layer | 33.54 34.39 36.07
(+0.85) (+2.53)

Table 1. Quantitative results on PASCALContext. All numbers are mea-

sured in the metric of mean intersection over union (mloU, %).

I st-round Gamma rGamma
22-layer 24.53 25.45 27.00
(+0.92) (+2.47)
54-layer 25.20 26.29 27.19
(+1.09) (+1.99)
105-layer | 26.33 27.44 28.79
(+1.11) (+2.46)

Table 2. Quantitative results on ADE20k. All numbers are measured in the

metric of mean intersection over union (mloU, %).

ADE20k PASCALContext

Arch mR mP mR mP

22 26.43 63.02 34.06 77.38
GMM | 54 26.87 63.76 37.19 79.91

105 27.64 64.98 39.03 80.85

22 25.45 65.72 33.28 81.28
rGMM | 54 25.98 66.66 36.44 83.34

105 26.89 67.58 38.26 84.18

Table 5. Transductive inference performance for our method. Short names
mP/mR are categorical mean values for precision/recall, which are mea-

sured in percentage (% ). Arch stands for the depth of backbones.



More Insights:

Segment Area

Precision
Recall
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ADE Dataset. 1053-laver backbone, rGMM
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More Insights: Drawing supervision points
near boundaries?
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On-going research: Other uncertainty measures ?

* We use Drop-out uncertainty in our research.

Dropout as a bayesian approximation: Representing model uncertainty
in deep learning

* We have checked random BN uncertainty, it worked too.
Bayesian uncertainty estimation for batch normalized deep networks

* We are investigating Gumbel-softmax uncertinaty, which works but
weakens the baseline.

A Bayesian Neural Net to Segment Images with Uncertainty Estimates
and Good Calibration



http://www.jmlr.org/proceedings/papers/v48/gal16.pdf
https://arxiv.org/abs/1802.06455
https://link.springer.com/chapter/10.1007/978-3-030-20351-1_1
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