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Abstract

Weakly supervised object localization (WSOL) is a task
of localizing an object in an image solely relying on image-
level labels. To tackel the WSOL problem, most previous
studies have employed a class activation mapping (CAM).
Despite its universal use, in this work, we demonstrate it
suffers from three fundamental issues: (i) the bias of GAP to
assign a higher weight to a channel with a small activation
area, (ii) negatively weighted activations inside the object
regions and (iii) instability from the use of maximum value
of a class activation map as a thresholding reference. They
collectively cause the problem that the localization predic-
tion to be highly limited to the small region of an object.
We propose three simple but robust techniques that allevi-
ate the problems, including thresholded average pooling,
negative weight clamping and percentile as a thresholding
standard. We participated in Learning from Imperfect Data
(LID) 2020 challenge and won the 1st and 2nd places for
weakly supervised object localization (Track 3) and seman-
tic segmentation (Track 1).

1. Introduction

Contrast to fully-supervised object detection, the mod-
els for weakly supervised object localization (WSOL) are
trained for classification solely relying on image-level la-
bels. They utilize the feature map activations from the
last convolutional layer to generate class activation maps
from which bounding boxes are estimated. Since CAM ap-
proach [10] was initially introduced, most of previous stud-
ies on WSOL have followed its convention to first gener-
ate class activation maps and extract object locations out
of them. However, this approach suffers from severe under-
estimation of an object region since the discriminative re-
gion activated through classification training is often much
smaller than the object’s actual region. For instance, accord-
ing to the class activation map (Mk) in Fig. 1, the classifier
focuses on the head of the monkey rather than its whole
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body, since the activations of the head are enough to cor-
rectly classify the image as monkey. Thus, the bounding
box reduces to delineate small highly activated head region
only. To resolve this problem, recent studies have devised
architectures to obtain larger bounding boxes by expanding
activations [7, 6, 9, 1]. These methods have significantly im-
proved the performance of WSOL and other relevant tasks
such as weakly supervised semantic segmentation (WSSS).

In this work, however, we propose a different approach
from previous researches; we focus on correctly utilizing
the information that already exists in the feature maps. We
summarize the contributions of this work as follows:

1. We discover three underlying issues residing in the
CAM that hinder from properly utilizing the informa-
tion from the feature maps for localization. Our analy-
sis on CAM reveals the mechanism of how each com-
ponent of CAM negatively affects the localization to
be limited to a small region of an object. Based on
the analysis, we propose three simple but robust tech-
niques that significantly alleviate the problems.

2. We participated in LID 2020 challenge [8], and won
the 1st and 2nd places for Track 3 (WSOL) and Track 1
(WSSS) using the same model.

2. Approach
We first review how the CAM [10] works in WSOL (sec-

tion 2.1), and then elaborate its three problems followed by
our solutions to alleviate the problems (section 2.2–2.4).

2.1. Preliminary: Class Activation Mapping (CAM)

In CNN trained for classification, a class activation map
is the weighted sum of feature maps from the last convolu-
tional layer with the weights from a fully connected (FC)
layer. Let a feature map be F ∈ RH×W×C

≥0 . Fc ∈ RH×W
≥0

denotes c-th channel of F. As described in Figure 1, a global
average pooling (GAP) layer first averages each Fc spatially
and outputs a pooled feature vector, pgap as follows,

pgap
c =

1

H ×W
∑
(h,w)

Fc(h,w), (1)
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Figure 1: The overview of the CAM pipeline. We investigate three phenomena of the feature maps (F). P1. The areas of the
activated regions largely differ by channel. P2. The activated regions corresponding to the negative weights (wc < 0) often
cover large parts of the target object (e.g. monkey). P3. The most activated regions of each channel significantly overlap at
small regions. The three modules of CAM in gray boxes (M1–M3) does not take these phenomena into account correctly,
which results in the localization being limited to small discriminative regions of an object.

where pgap
c denotes a scalar of pgap at c-th channel, and

Fc(h,w) is an activation of Fc at spatial position (h,w).
The pooled feature is then transformed intoK-dim logits

through the FC layer where K is the number of classes. We
denote the weights of the FC layer as W ∈ RC×K . Then
the class activation map for a class k denoted as Mk is

Mk =

C∑
c=1

wc,k · Fc, (2)

where Mk ∈ RH×W and wc,k is an (c, k) element of W.
For localization, M′k is first generated by resizing Mk to

the original image size. With a localization threshold

τloc = θloc ·maxM′k, (3)

a binary mask Bk identifies the regions where the activa-
tions of M′k is greater than τloc: Bk = 1(M′k > τloc).
Finally, localization is predicted as a bonding box that cir-
cumscribes the contour of the regions with the largest pos-
itive area of Bk. Note that for Track 3, saliency maps from
M′k are produced instead.

2.2. Thresholded Average Pooling (TAP)

Problem. In WSOL, a GAP layer is employed to com-
pute a weight of each channel to generate a class activation
map. But, it tends to produce distorted weights for local-
ization. As in Eq.(1), it sums all the activations and divides
by H×W without considering the actual activated area per
channel. The difference in the activated area is, however, not
negligible. As an example in Fig 2, suppose i-th feature in
(a) captures the head of a bird whereas j-th feature captures
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Figure 2: An example illustrating a problem of using the
GAP layer. The GAP layer causes the features with small
activation area Fi to be underestimated so that the corre-
sponding weight wi,k is trained to be larger than wi,k. As
a result, the weighted feature with small activation region,
wi,k · Fi, is highly overstated in localization phase.

its body. While the area activated in Fi is smaller than Fj ,
the GAP layer divides both of them byH×W , so the pooled
feature pgap

i of Fi is also smaller than pgap
j . But, it does not

mean the importance of Fi for classification is less than Fj

as their contributions to logit z are almost the same as 0.1
and 0.099. For the ground truth class (k: bird), to compen-
sate this difference, the FC weight wi,k corresponding to Fi

is trained to be higher than wj,k. As a result, when generat-
ing Mk in Eq.(2), small activated regions of Fi are highly
overstated due to a large value of wi,k. It causes localization
to be limited to small region as localization depends on the
maximum value of a class activation map.

Solution. To alleviate the problem of GAP, we propose
the thresholded average pooling (TAP) layer. By replacing
a GAP layer with a TAP layer, the pooled feature at c-th
channel (Eq.(1)) is redefined as



(a) Positive weights (b) Negative weights
Figure 3: Intersection over Area (IoA) between the ground
truth and predictions only using positive (a) and negative
(b) weighted features. It indicates how much the features
with the corresponding weights are activated in the object
region. Surprisingly, a majority of the features with negative
weights (b) are activated inside the objects. It is comparable
to those with positive weights.

ptap
c =

∑
(h,w) 1(Fc(h,w) > τtap)Fc(h,w)∑

(h,w) 1(Fc(h,w) > τtap)
, (4)

where τtap = θtap ·maxFc denotes a threshold value where
θtap ∈ [0, 1) is a hyperparameter.

2.3. Negative Weight Clamping (NWC)

Problem. When CNNs are trained for classification, a
large number of the weights from the FC layer are negative.
The features with negative weights help a model discrimi-
nate between different classes by decreasing the prediction
probability of a target class. Existing CAM methods include
the features with negative weights, and its underlying as-
sumption is that they are mostly activated in no-object re-
gion like background. In contrast to this expectation, our
analysis reveals many features with negative weights are
concentrated within the object region as shown in Figure 3.
Especially, their activations are high in the less discrimina-
tive regions compared to the features with positive weights.

We conjecture this phenomenon is closely related to the
setting of WSOL: only one object is in an image. Suppose
an image with a single object (e.g. dog). The features corre-
sponding to negative weights mostly capture the character-
istics of different classes (i.e. cat) inside the region of dog
because they are similar to dog class not the background.

Solution. To mitigate this problem, we simply clamp
negative weights to zero to generate a class activation map.
Hence, Eq.(2) is redefined as

Mk =

C∑
c=1

1(wc,k > 0) · wc,k · Fc. (5)

By doing this, we can secure the activations that are depre-
ciated in the object regions.

2.4. Percentile as a Thresholding Standard (PaS)

Problem. Another issue of the CAM method is that
many channels have high activations at small overlapping
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Figure 4: An example describing the problem of the over-
lap of high activations (top) compared to a successful case
(bottom). In the top case, when high activations (activation
> τ0.8) are concentrated in the small discriminative region,
the localization threshold τloc becomes too high due to the
high maximum of the class activation map.

regions. Figure 4 compares two examples of problematic
(top) and successful (bottom) localization. Figure 4(a) de-
picts the number of channels whose activations are greater
than τ0.8 = 0.8×(the max of weighted features) at each po-
sition. In the top row of Figure 4(c), when the activation
distribution follows Zipf’s law, the maximum value (dotted
line in blue) is not a robust metric as a thresholding standard
for localization, since the localization threshold τloc (dotted
line in black) captures only small region of the object when
high activations overlap. Contrarily, high activations are dis-
tributed throughout the object in the bottom successful case.

Solution. Unlike the maximum, a percentile is one of
the simplest but most robust metrics that are not sensitive to
outliers and exponential distributions of activations. Hence,
the Eq. (3) for the localization threshold τloc is redefined as

τloc = θloc · peri(M′k), (6)

where peri is an i-th percentile.

3. Experiments
We evaluate the proposed approach on ImageNet-1K [5]

as a part of Track 3 in LID 2020 challenge [8]. Our approach
largely improves the performance with ResNet50-SE [2, 3]
backbone. We further evaluate our approach on WSSS task
as a part Track 1 in LID challenge.

3.1. Experiment Setting

Dataset. Track 3 organizes 1.2 million training images
of 1,000 different categories from ImageNet-1K [5]. Vali-
dation and test sets contain 23,151 and 21,120 images with
pixel-annotation, respectively. Track 1 includes 456,567
training images, 5,000 validation and 10,000 test images
with pixel-level annotations. Unlike Track 3, it assumes



Method CRF PaS NWC TAP Peak IoU

Baseline 0.5254
X 0.5461

+ Ours
X X 0.5563
X X X 0.5881
X X X X 0.6370

Table 1: Performance with different components applied.

Rank Team Peak IoU
1 SNUVL (Ours) 0.63
2 BJTU-Mepro-MIC 0.62
3 LEAP Group@PCA Lab 0.61
4 chohk (wsol aug) 0.53
5 TEN 0.48

Table 2: Leaderboard of Track 3 (WSOL).

Rank Team Mean IoU
1 cvl 45.18
2 SNUVL (Ours) 37.73
3 UCU & SoftServe 37.34
4 IOnlyHaveSevenDays 36.24
5 play-njupt 31.90

Table 3: Leaderboard of Track 1 (WSSS).

multi-class objects per image. For both tracks, only image-
level annotations are allowed to use in training step.

Implementation. We use a ResNet50-SE [2, 3] as a
backbone network with slight modification for CAM. The
images are resized to 384×384 and randomly cropped to
336×336 followed by horizontal flip. As a post-processing
step, a fully connect CRF [4] is employed. Furthermore, we
set θtap = 0.05 and i = 98 for TAP and PaS, respectively.

Evaluation metric. We report the performance of mod-
els using Peak IoU and Mean IoU for Track 3 and 1, respec-
tively. Peak IoU is the maximum of all the possible IoUs
between the ground truths and predicted masks, and Mean
IoU is the mean of IoUs of each class.

3.2. Quantitative Results

Track 3: WSOL. We demonstrate the effectiveness of
each proposed solution on validation set. As shown in Ta-
ble 1, adding each component largely improves the Peak
IoU. As a result, we achieve 0.6370 on validation set, and
0.63 on test set which is ranked the 1st for Track 3 (Table 2).

Track 1: WSSS. We expected our methods would also
work for Track 1 as long as a large number of images con-
tain only one object. Our analysis reveals about 87 and 72
percent of images contain only one class. Unlike standard
multi-class segmentation approach, we train a classification
model on a single ground truth class chosen based on the
number of images that a class belongs to. In inference, the
model predicts segmentations of only one class. As a result,
we won the 2nd place on Track 1 as in Table 3.

CAM + Ours CAM + Ours CAM + Ours

Figure 5: Qualitative results. The boxes in red and green
represent the ground truths and predictions of localization.

3.3. Qualitative Results

We present the qualitative results for the proposed meth-
ods compared to the CAM. In Figure 5, the proposed meth-
ods help a model to utilize more activations in object region.

4. Conclusion
Despite the universal use of CAM, it contains three flaws

which cause localization limited to small discriminative re-
gions. Instead of endeavoring to extract additional informa-
tion as done in the most of previous studies on WSOL, we
proposed three simple but robust methods to properly utilize
the information obtained from classification. We validated
our methods largely mitigate the problems, and won the 1st
and 2nd place for Track 3 and 1 in LID 2020 challenge.
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