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Abstract

Pointly-supervised learning is an important topic for
scene parsing, as dense annotation is extremely expensive
and hard to scale. The state-of-the-art method harvests
pseudo labels by applying thresholds upon softmax outputs
(logits). Our method, by contrast, builds upon uncertainty
measures instead of logits and is free of threshold tuning.
We motivate the method with a large-scale analysis of the
distribution of uncertainty measures, using strong models
and challenging databases. This analysis leads to the dis-
covery of a statistical phenomenon called uncertainty mix-
ture. Inspired by this discovery, we propose to decompose
the distribution of uncertainty measures with a Gamma mix-
ture model, leading to a principled method to harvest reli-
able pseudo labels. Beyond that, we assume the uncertainty
measures for labeled points are always drawn from the cer-
tain component. This amounts to a regularized Gamma mix-
ture model. We provide a thorough theoretical analysis of
this model, showing that it can be solved with an EM-style
algorithm with convergence guarantee. Our method is also
empirically successful. On PascalContext and ADE20k, we
achieve clear margins over the baseline.

1. Introduction

Dense annotation for scene parsing is very expensive.
Thus annotating scenes with point clicks and semantic class
assignment is an appealing alternative, and training with
this kind of labels is called ponitly-supervised scene parsing
in this paper. Specifically speaking, full supervision corre-
sponds to the right-bottom parts of each panel in Fig[T} and
point supervision is enlarged and overlapped onto the in-
put images as the left-top parts demonstrate. This work fo-
cuses on harvesting pseudo labels for the pointly-supervised
training set. Specifically speaking, one can train a model
using only the point supervision, which is referred to as the
first round model. This model would produce a semantic la-
bel prediction for every pixel in the training set, as demon-
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Figure 1. Here we show input images with point supervision,
pseudo label maps, uncertainty maps and full ground truth.

strated in the right-top parts of each panel in Fig[T] They are
referred to as pseudo labels throughout this paper. They are
erroneous, but containing right ones. The central problem
considered here is how to harvest as-many-as-possible good
pseudo labels for training. The state-of-the-art method [3]]
expands point supervision into regions and regards them as
trustworthy pseudo labels. It is proven effective on public
benchmarks yet there exist two critical issues:

Firstly, it relies upon softmax outputs, or say logits. It is
known that logits can be over-confident upon wrong predic-
tion. The reason behind is that softmax result is only a sin-
gle point estimate of the predictive distribution. Instead, we
compute the uncertainty measures for these predictions, de-
picted in the left-bottom parts of each panel in Fig[I} They
faithfully reflect the confidence of the network outputs. It is
obvious that harvesting pseudo labels with low uncertainty
(low color temperature in Fig[I) is a promising solution.
However, how do we properly define ’low uncertainty’?

Secondly, harvesting pseudo labels using logits would
introduce thresholds. It is very time-consuming to tune
thresholds for modern deep networks. Meanwhile, using
the natural thresholds generated by argmax would lead to a
trivial usage of the pseudo labels. One may argue that us-
ing uncertainty measures still involves defining a low uncer-
tainty threshold, as just mentioned in the last bullet point.
We show that this problem can be resolved by exploiting a
newly discovered statistical phenomenon called uncertainty



mixture. It allows us to decide on the optimal threshold
of uncertainty measures in an automatic way. Specifically
speaking, we decompose the uncertainty measures for un-
labeled points with a Gamma mixture and harvest pseudo
labels belonging to the certain component.

Beyond the direct application of Gamma mixture, a new
regularized model tailored for our problem is proposed, an-
alyzed, implemented and evaluated. We assume the uncer-
tainty measures for labeled points are drawn from the cer-
tain component. Intuitively, this helps the mixture model to
better capture the shape of the certain component. Mathe-
matically, this amounts to an added regularization term in
the objective function of an EM procedure. Since the model
has not been visited before, we present a systematic expo-
sition of its analytical properties, from convergence guaran-
tee to solver details. Empirically, this regularized Gamma
mixture harvests pseudo labels of higher quality than the
baseline and leads to better scene parsing performance, in
all experimental settings we inspected.

Last but not least, our method is extensively bench-
marked on challenging public datasets, namely PascalCon-
text and ADE20k. It turns out that our method works ro-
bustly in various settings. This robustness is attributed to the
nature of the method: our mixture modeling decides on the
optimal threshold of uncertainty measures automatically.
On an absolute scale, our method collaborates well with
strong network architectures and training techniques, result-
ing in new state-of-the-art performance on both datasets.
We believe our solution to be a useful one due to its ro-
bustness and good performance.

2. Uncertainty Mixture

A fully-supervised scene parsing dataset is denoted as
{I*, L'}, in which I is the image and L’ is the label map.
A pointly-supervised version of this dataset is depicted as
{I*, P} and P" is the degenerated version of L. First, we
train a model M (x; ©1) using only P’ and we call it the
first-round model. Formally, we solve this problem:

i CE(M(I'; e, P
argrglpzi: (M(I';0"), PY)

in which CE(x,x) is the cross-entropy loss function.
Only labeled points in P? provide supervision signals for
the model. Note that M (I%;©!) gives a softmax result
(logit) for every pixel in I*. By taking the index of the max-
imum value in M (I; ©%), we can get the pseudo label map
F'. If we use F' as it is, this can be considered as a product
of applying natural argmax thresholds upon M (I%; ©). It
is also possible to exploit thresholds on M (I%; ©1) to har-
vest a subset of F* as pseudo labels.

For image I°, we generate an uncertainty map U®. Our
goal is to look for rules to tell certain pixels from uncertain
ones. We take Fig [2] as an example, in which two pixels
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Figure 2. Pixel A: a wrong pseudo label with high uncertainty.
Pixel B: a correct pseudo label with low uncertainty.

are highlighted. In the pseudo label map generated by the
first round model, pixel A is wrongly predicted as blanket
so that we should not use it for training. Meanwhile, pixel
B is correctly predicted as bed and considered as a good
pseudo label. It can be clearly seen that in the uncertainty
map, pixel A has higher color temperature than pixel B.

We conduct an analysis as such:

We assume there are C' categories and F; to be the binary
mask of category j in the corresponding pseudo label map.
Here j = 1,...,C. Applying this mask on the uncertainty
map U’ gives us U;f which is the uncertainty measures for
a specific category. By stacking vectorized U ; and exclud-
ing zero entries, we collect all the uncertainty measures for
points labeled as j, and this array is called Uj.

The uncertainty mixture phenomenon emerges in this
analysis: The histogram of U; is shaped as a two-peak mix-
ture, as Fig[3|demonstrates.

3. Pointly-supervised Scene Parsing

In the mixture of uncertainty measures, we name the
low uncertainty component as LUC and the high uncer-
tainty component as HUC. We regard LUC and HUC as
Gamma distributions parameterized by 6; = {1, 31} and

02 = {aa, Ba}:
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Here I'(x) is the Gamma function.

And p; + ps characterizes the underlying distribution of
every histogram of U; as visualized in Fig [3} In order to
determine the parameters 601, 62, we can use a standard EM
algorithm described in [4]] or our regularized EM algorithm.
As such, we can harvest pseudo labels belonging to LUC
and train the model with them.

Here we formally summarize the whole pipeline of train-
ing pointly-supervised scene parsing models with uncer-
tainty mixture. We divide the method into five steps:

(1) Train the first round model M (x; ©') on the original
pointly-supervised dataset {I?, P*};
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Figure 3. This figure illustrates the ubiquitous existence of the uncertainty mixture phenomenon. Separated by the dash line, left panels
correspond to ADE20k and right panels correspond to PASCALContext. Under each panel denotes the class index and name.

(2) Generate the uncertainty measure array U; for each
category j on the whole training set;

(3) Estimate the Gamma mixture parameters 0 ;, 02; by
applying the EM algorithm on U};

(4) For each unlabeled pixel with pseudo label j
and uncertainty measure x, compare p;(z;i;,31;) and
p2(x; g, B2;). If the former is smaller, harvest this pixel
and its pseudo label. Combining all harvested pseudo labels
and the original dataset dataset, we get the new dataset with
good pseudo labels {I?, G'};

(5) Finetune the first round model on the augmented
dataset {I°, G}, to get the final model M (x; ©2).

4. Regularized Gamma Mixture Model

In short, our regularized model incorporates the uncer-
tainty measures for labeled points into the formulation.
Similar to the generation of the category-wise vector of U,
we collect the uncertainty measures for labeled points (of
category j) as U;. The task remains the same: automatically
estimating the parameters {61, 62, }. The core assumption
is that a is drawn from LUC. Empirically UT samples have
an uncertainty measure marginally larger than zero. There
are other two possible assumptions: (1) U; is drawn from
HUC; (2) 7] is drawn from a third very certain component.
Yet apparently they are not reasonable.

Adding this data term into the Gamma mixture model
[4] leads to a maximum likelihood estimation problem that
has not been studied before. So in this section we provide
a thorough analysis of it, giving answers to several impor-
tant questions: (1) Can this problem be solved with an EM-
algorithm? (2) Is it guaranteed to converge like the standard
EM-algorithm? (3) What are the detailed steps to solve it?

In this short version, mathematical details are omitted.
Interested readers can refer to the full version.

5. Results
5.1. Protocols

All our evaluations are done with PSPNets [[7] with DRN
backbones [6]]. We consider three backbones of different ca-
pacities: 22-layer DRN, 54-layer DRN and 105-layer DRN.
We report results on two representative benchmarks PAS-
CALContext 2] and ADE20k [8]], using the standard splits.
For PASCALContext, 4998 samples are used for training
and 5105 samples are used for testing. For ADE20k, 20210
images are used for training and 2000 images are used for
testing. For a fair comparison, we use the same point anno-
tation sets as [3] do. They have released the point annota-
tion for ADE20k [5]]. For the PASCALContext dataset, we
generate the point annotation by selecting the mid-point of
[L]’s scribbles, as [3] told us in mail. We use the category-
wise and average intersection over union (IoU) as the met-
ric. For both the 1st-round model and the fifth step in our
pipeline, we train with 100 epochs, a polynomial learning
rate annealing strategy of 0.9 alpha value, 0.5x to 2x ran-
dom scaling, 10 degree random rotation and a crop size of
320 x 320 pixels. The testing is done in a single resolution.

5.2. Major Results

Here we present the major evaluation results of this
study: our framework (section 4) improves the first-round
model’s performance on all data ponits we inspected and
our regularized model is better than the original Gamma
mixture formulation. Quantitative results are summarized
in Table [T] for PASCALContext and Table 2] for ADE20k.
Results for different backbone capacities are presented in
different rows. The first column corresponds to the results
at the first step. The second and third colums correspond
to the performance of the fifth step. Gamma stands for the
original Gamma mixture modelling and rGamma represents



Ist-round | Gamma rGamma ADE20k PASCALContext

22-layer 31.52 32.48 34.17 Arch mR mP mR mP
(+0.96) (+2.65) 22 26.43 63.02 34.06 77.38
54-layer 32.63 33.52 3544 GMM | 54 26.87 63.76 37.19 79.91
(+0.89) (+2.81) 105 27.64 64.98 39.03 80.85
105-layer | 33.54 34.39 36.07 22 25.45 65.72 33.28 81.28
(+0.85) (+2.53) rGMM | 54 25.98 66.66 36.44 83.34
Table 1. Quantitative results on PASCALContext. All numbers are 105 26.89 67.58 38.26 84.18

measured in the metric of mean intersection over union (mloU, %).

Ist-round | Gamma rGamma
22-layer 24.53 25.45 27.00
(+0.92) (+2.47)
54-layer 25.20 26.29 27.19
(+1.09) (+1.99)
105-layer | 26.33 27.44 28.79
(+1.11) (+2.46)

Table 2. Quantitative results on ADE20k. All numbers are mea-
sured in the metric of mean intersection over union (mloU, %).

the proposed regularized model. Margins over the 1st-round
model are also denoted.

From these results we can clearly draw the conclusion
that training with pseudo labels harvested by our methods
is much better than solely the point annotation. Notably,
our algorithms (both Gamma and rGamma) are completely
free of threshold tuning. This is credited to the discovery
of the uncertainty mixture phenomenon, whose existence is
retrospectively supported by these quantitative results. The
regularized model out-performs the vanilla Gamma mixture
solution with clear margins. It supports the necessity of ex-
ploiting the uncertainty measures for labeled points.

5.3. Transductive Inference Evalaution

In order to further evaluate the pseudo label quality,
we report transductive inference results in Table [3] While
weakly-supervised learning performance is demonstrated
on the testing set, transductive inference performance is re-
flected with the unlabeled samples in the training set. We
use two metrics: categorical mean precision and recall. For
each one from the 150/60 classes in ADE20k and PASCAL-
Context, we first calculate the precision and recall for har-
vested pseudo labels then average them. It can be seen that
our regularization term leads to clearly higher precision and
a little bit lower recall. This fact illustrates the working
mechanism of rtGMM: to harvest more accurate pseudo la-
bels by selecting more strict thresholds.

6. Conclusions

We study the problem of pointly-supervised scene par-
ing in this paper and make four contributions to the com-

Table 3. Transductive inference performance for our method.
Short names mP/mR are categorical mean values for preci-
sion/recall, which are measured in percentage (%). Arch stands
for the depth of backbones.

munity. Firstly, we conduct a large-scale statistical analysis
of the category-wise uncertainty measure for this setting.
The major outcome of this analysis is the discovery of a
phenomenon called uncertainty mixture. We believe it is
of interest to many researchers as it reveals an intriguing
property of deep models. Secondly, inspired by the phe-
nomenon, we propose a pipeline that addresses the problem
of harvesting pseudo labels in a principled manner. There is
no need to tune thresholds on logits. Thirdly, a new regular-
ized Gamma mixture model is presented and thoroughly an-
alyzed, which is proved to be more effective than the vanilla
model. Lastly but not least, we set new state-of-the-art re-
sults on two public benchmarks.
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