
Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation

Guolei Sun , Wenguan Wang , Luc Van Gool
ETH Zurich, Switzerland

{sunguolei.kaust, wenguanwang.ai}@gmail.com

Abstract

This paper studies the problem of learning weakly super-
vised semantic segmentation from image-level supervision
only. Current popular solutions leverage object localization
maps from classifiers as supervision for semantic segmen-
tation learning, and struggle to make the localization maps
capture more complete object content. Rather than previ-
ous efforts that primarily focus on intra-image information,
we address the value of cross-image semantic relations for
comprehensive object pattern mining. To achieve this, two
neural co-attentions are incorporated into the classifier to
complimentarily capture cross-image semantic similarities
and differences. In particular, given a pair of training im-
ages, one co-attention enforces the classifier to recognize
the common semantics from co-attentive objects, while the
other one, called contrastive co-attention, drives the clas-
sifier to identify the unshared semantics from the rest, un-
common objects. This helps the classifier discover more ob-
ject patterns and better ground semantics in image regions.
By these careful designs, our approach ranked 1st place
in the Weakly-Supervised Semantic Segmentation Track of
CVPR2020 Learning from Imperfect Data (LID) Challenge.

1. Introduction

This work focuses on weakly supervised semantic seg-
mentation (WSSS) with only image-level labels. Current
popular solutions are based on network visualization tech-
niques [10], which discover discriminative regions that are
activated for classification. They use image-level labels to
train a classifier network, from which class-activation maps
are derived as pseudo ground-truths for further supervising
pixel-level semantics learning. However, it is commonly
evidenced that the trained classifier over-addresses the most
discriminative parts rather than entire objects, which be-
comes the focus of this area. Diverse solutions are explored,
such as image-level operations [3], regions growing strate-
gies[5], and feature-level enhancements[7].

However, as shown in Fig. 1(a), previous efforts typically
use only single-image information for object pattern discov-
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Figure 1: (a) Current WSSS methods only use single-image infor-
mation for object pattern discovering. (b) Our co-attention classi-
fier leverages cross-image semantics as class-level context to ben-
efit object pattern learning and localization map inference.

ering, ignoring the rich semantic context among the weakly
annotated data. For example, with the image-level labels,
not only the semantics of each individual image can be
identified, the cross-image semantic relations, i.e., two im-
ages whether sharing certain semantics, are also given and
should be used as cues for object pattern mining. Inspired
by this, rather than relying on intra-image information only,
we further address the value of cross-image semantic cor-
relations for complete object pattern learning and effec-
tive class-activation map inference (Fig.1(b)). In particular,
our classifier is equipped with a differentiable co-attention
mechanism that addresses semantic homogeneity and dif-
ference understanding across training image pairs. More
specifically, two kinds of co-attentions are learned in the
classifier. The former one aims to capture cross-image com-
mon semantics, which enables the classifier to better ground
the common semantic labels over the co-attentive regions.
The latter one, called contrastive co-attention, focuses on
the rest, unshared semantics, which helps the classifier bet-
ter separate semantic patterns of different objects. These
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(a) Overview of our co-attention classifier during training phase
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Figure 2: (a) In addition to mining object semantics from single-image labels, semantic similarities and differences between paired training
images are both leveraged for supervising object pattern learning. (b) Co-attentive and contrastive co-attentive features complimentarily
capture the shared and unshared objects. (c) Our co-attention classifier is able to learn object patterns more comprehensively.

two co-attentions work in a cooperative and complimentary
manner, together making the classifier understand object
patterns more comprehensively. Another advantage is that
our co-attention based classifier learning paradigm brings
an efficient data augmentation strategy, due to the use of
training image pairs. With above efforts, our method ranked
1st place in the Weakly-supervised Semantic Segmentation
Track of CVPR2020 Learning from Imperfect Data (LID)
Challenge [8] (LID20), outperforming other competitors by
large margins.

2. Our Algorithm
2.1. Co-attention Classification Network

Let us denote the training data as I={(In, ln)}n, where
In is the nth training image, and ln ∈{0, 1}K is the asso-
ciated ground-truth image label for K semantic categories.
As shown in Fig.2(a), image pairs, i.e., (Im, In), are sam-
pled from I for training the classifier. After feeding Im and
In into the conv part of the classifier, corresponding feature
maps, Fm∈RC×H×W and Fn∈RC×H×W, are obtained, each
with H×W spatial dimension and C channels. Then we can
first separately pass Fmand Fn to a class-aware fully convo-
lutional layer ϕ(·) to generate class-aware activation maps,
i.e., Sm=ϕ(Fm)∈RK×H×W and Sn=ϕ(Fn)∈RK×H×W,
respectively. Then, we apply global average pooling (GAP)
over Sm and Sn to obtain class score vectors sm∈RK and
sn∈ RK for Im and In, respectively. Finally, the sigmoid
cross entropy (CE) loss is used for supervision:
Lmn

basic
(
(Im, In), (lm, ln)

)
=LCE(sm, lm)+LCE(sn, ln),

=LCE
(
GAP(ϕ(Fm)), lm

)
+

LCE
(
GAP(ϕ(Fn)), ln

)
.

(1)

Next we will endow the classifier with a co-attention mech-
anism for further mining cross-image semantics and even-
tually better localizing objects.

Co-Attention for Cross-Image Common Semantics Min-
ing. Our co-attention attends to the two images, i.e., Im and
In, simultaneously, and captures their correlations. We first
compute the affinity matrix P between Fm and Fn [4]:

P = F>mWPFn ∈RHW×HW , (2)

where WP ∈RC×C is a learnable matrix. P stores similar-
ity scores corresponding to all pairs of positions in Fm and
Fn. Then, P is normalized column-wise to derive atten-
tion maps across Fm for each position in Fn, and row-wise
to derive attention maps across Fn for each position in Fm:

Am=softmax(P ) ∈ [0, 1]HW×HW,

An=softmax(P>)∈ [0, 1]HW×HW,
(3)

where softmax is performed column-wise. In this way, An

and Am store the co-attention maps in their columns. Next,
we can compute attention summaries of Fm (Fn) in light of
each position of Fn (Fm):

Fm∩n
m =FnAn∈RC×H×W, Fm∩n

n =FmAm∈RC×H×W. (4)

Co-attentive feature Fm∩n
m , derived from Fn, preserves the

common semantics between Fmand Fnand locate the com-
mon objects in Fm. Thus we can expect only the common
semantics lm∩ ln

1 can be safely derived from Fm∩n
m , and

the same goes for Fm∩n
n . Such co-attention based common

semantic classification can let the classifier understand the
object patterns more completely and precisely.

To make things intuitive, consider the example in Fig. 2,
where Im contains Table and Person, and In has Cow and
Person. As the co-attention is essentially the affinity com-
putation between all the position pairs between Im and In,
only the semantics of the common objects, Person, will be
preserved in the co-attentive features, i.e., Fm∩n

m and Fm∩n
n

(Fig.2(b)). If we feed Fm∩n
m and Fm∩n

n into the class-aware

1The set operation ‘∩’ is extended here to represent bitwise-and.



fully convolutional layer ϕ, the generated class-aware acti-
vation maps, i.e., Sm∩nm =ϕ(Fm∩n

m ) and Sm∩nn =ϕ(Fm∩n
n ),

are able to locate the common object Person in Im and
In, respectively. After GAP, the predicted semantic classes
sm∩nm and sm∩nn should be the common semantic labels
lm∩ln, i.e., Person. Through co-attention computation, not
only the human face, the most discriminative part of Per-
son, but also other parts, such as legs and arms, are high-
lighted in Fm∩n

m and Fm∩n
n (Fig. 2(b)). When we set the

common class labels, i.e., Person, as the supervision sig-
nal, the classifier would realize that the semantics preserved
in Fm∩n

m and Fm∩n
n are related and can be used to recog-

nize Person. Thus, the co-attention, computed across two
related images, explicitly helps the classifier associate se-
mantic labels and corresponding object regions and better
understand the relations between different object parts. It
makes full use of the context across training data.

For co-attention based common semantic classification,
the common labels lm∩ ln are used to supervise learning:

Lmn
co-att
(
(Im, In), (lm, ln)

)
=LCE(s

m∩n
m , lm∩ln)+

LCE(s
m∩n
n , lm∩ln),

=LCE
(
GAP(ϕ(Fm∩n

m )), lm∩ln
)
+

LCE
(
GAP(ϕ(Fm∩n

n )), lm∩ln
)
.

(5)

Contrastive Co-Attention for Cross-Image Exclusive Se-
mantics Mining. Aside from the co-attention described
above that explores cross-image common semantics, we
propose a contrastive co-attention that mines semantic dif-
ferences between paired images. The co-attention and con-
trastive co-attention complementarily help the classifier bet-
ter understand the concept of the objects.

As shown in Fig. 2(a), for Im and In, we first de-
rive class-agnostic co-attentions from their co-attentive fea-
tures, i.e., Fm∩n

m and Fm∩n
n , respectively:

Bm∩n
m =σ(WBFm∩n

m )∈ [0, 1]H×W,

Bm∩n
n =σ(WBFm∩n

n )∈ [0, 1]H×W,
(6)

where σ(·) is the sigmoid activation function, and the pa-
rameter matrix WB ∈ R1×C learns for common semantics
collection and is implemented by a conv layer with1×1ker-
nel. Bm∩n

m and Bm∩n
n are class-agnostic and highlight all

the common object regions inIm and In, respectively, based
on which we derive contrastive co-attentions:

Am\n
m = 1−Bm∩n

m ∈ [0, 1]H×W,

An\m
n = 1−Bm∩n

n ∈ [0, 1]H×W.
(7)

The contrastive co-attention A
m\n
m of Im addresses those

unshared object regions that are only of Im, but not of In,
and the same goes for An\m

n . Then we get contrastive co-
attentive features, i.e., unshared semantics in each images:

Fm\n
m = Fm⊗Am\n

m ∈RC×H×W,

F n\m
n = Fn⊗An\m

n ∈RC×H×W.
(8)

‘⊗’ denotes element-wise multiplication, where the atten-
tion values are copied along the channel dimension. Next,
we can sequentially get class-aware activation maps, i.e.,
S
m\n
m =ϕ(F

m\n
m ) and S

n\m
n =ϕ(F

n\m
n ), and semantic scores,

i.e., sm\nm =GAP(Sm\nm ) and s
n\m
n =GAP(Sn\mn ). For sm\nm

and s
n\m
n , they are expected to identify the categories of the

unshared objects, i.e., lm\ln and ln\lm2.
Compared with the co-attention that investigates com-

mon semantics as informative cues for boosting object pat-
terns mining, the contrastive co-attention addresses comple-
mentary knowledge from the semantic differences between
paired images. Fig. 2(b) gives an intuitive example. After
computing the contrastive co-attentions between Im and In
(Eq. 7), Table and Cow, which are unique in their origi-
nal images, are highlighted. Based on the contrastive co-
attentive features, i.e., Fm\n

m and F
n\m
n , the classifier is re-

quired to accurately recognize Table and Cow classes, re-
spectively. When the common objects are filtered out by
the contrastive co-attentions, the classifier has a chance to
focus more on the rest image regions and mine the unshared
semantics more consciously. This also helps the classi-
fier better discriminate the semantics of different objects,
as the semantics of common objects and unshared ones are
disentangled by the contrastive co-attention. For example,
if some parts of Cow are wrongly recognized as Person-
related, the contrastive co-attention will discard these parts
in F

n\m
n . However, the rest semantics in F

n\m
n may be not

sufficient enough for recognizing Cow. This will enforce
the classifier to better discriminate different objects.

For the contrastive co-attention based unshared semantic
classification, the supervision loss is designed as:

Lmn
co-att

(
(Im, In), (lm, ln)

)
=LCE(s

m\n
m , lm\ln)+

LCE(s
n\m
n , ln\lm),

=LCE
(
GAP

(
ϕ(Fm\n

m )
)
, lm\ln

)
+

LCE
(
GAP

(
ϕ(F n\m

n

)
, ln\lm

)
.

(9)

2.2. Co-Attention Guided WSSS Learning
Training Co-Attention Classifier. The overall training loss
for our co-attention classifier ensembles the three terms de-
fined in Eqs. 1, 5, and 9:

L=
∑

m,n
Lmn

basic + Lmn
co-att + Lmn

co-att. (10)

During training, to fully leverage the co-attention to mine
the common semantics, we sample two images (Im, In)
with at least one common class, i.e., lm ∩ ln 6= 0. Our
image classifier is based on ResNet-38 [9], pretrained on
ImageNet. The training parameters are set as: initial learn-
ing rate (0.005) and the poly policy based training schedule:

2The set operation ‘\’ is slightly extend here, i.e., ln\lm= ln−ln∩lm.



Table 1: Ablation study with mIoU metric (%).

TrainingTechniques Images (#) Val

Random sample 20K 31
Balance sample 20K 33

Balance sample + WCE loss 20K 36
Balance sample + WCE loss + label refinement 20K 38
Balance sample + WCE loss + label refinement Full (300K+) 46

lr= lrinit×(1− iter
max iter )

γ with γ(0.9), batch size (8), weight
decay (0.0005), and max epoch (15). During training, the
equivariant attention [6] is also adopted. Our classifier is
trained on 2 NVIDIA Tesla V100 GPUs.
Generating Object Localization Maps. Once our image
classifier is trained, for each training image In ∈I, we run
the classifier and directly use its class-aware activation map
(i.e., Sn) as the object localization map Ln. We also use
integral attention learning [2] to refine localization maps.
Learning Semantic Segmentation Network. After ob-
taining high-quality localization maps, we generate pseudo
pixel-wise labels for all the training samples I. Specif-
ically, we follow [1]: localization maps are first used to
train an AffinityNet model, which is then used to gener-
ate pseudo ground truth masks and background threshold is
set as 0.2. Note that no saliency maps are used. For the se-
mantic segmentation network, we choose ResNet-101 based
DeepLab-V3. The parameters are set as below: initial learn-
ing rate (0.007) with poly schedule, batch size (48), max
epoch (100), and weight decay (0.0001). The segmentation
model is trained on 4 Tesla V100 GPUs. During testing, re-
sults from multi scales are averaged, with CRF refinement.

3. Experiment
Dataset: The dataset of LID20 WSSS track[8] is built upon
ImageNet. It contains 349,319 images with image-level la-
bels from 200 classes. Evaluations are conducted on the val
and test sets, which have 4,690 and 10,000 images, respec-
tively. In this challenge, the standard mean intersection over
union (mIoU) criterion is used to rank competitors.
Ablation Study. We found three challenges in the dataset:
1) Huge data imbalance between different classes. For three
most common classes: bird, dog, and person, number of im-
ages is more than 20,000 while most other classes only have
∼1,000 images. 2) Imbalance between negative and posi-
tive samples in such a multi-label classification setting, due
to the sparsity of label matrix and large number of classes.
Sigmoid cross entropy loss, which is used most common,
does not work well. 3) Noisy labels (especially for per-
son). We solved those problems by developing following
techniques: 1) sampling images for each class in a balanced
way; 2) using the weighted sigmoid cross entropy (WCE)
loss; and 3) first training a strong classifier and then using
its output to refine labels. To study the efficacy of our above
techniques, we retain our model on 20K randomly sampled

Table 2: Results on val and test sets of LID20 WSSS track.

Team Val Test
play-njupt 22.07 31.90

IOnlyHaveSevenDays 39.00 36.24
UCU & SoftServe 39.65 37.34

VL-task1 40.08 37.73
CVL (ours) 46.29 45.18

training images, by gradually adding techniques. The per-
formance is reported on the val set, as shown in Table 1.
Main Results. The final results on LID20 WSSS track is
shown in Table 2. As can be seen, our approach largely
outperforms other methods on both val and test sets.

4. Conclusion
We propose a co-attention classification network to dis-

cover integral object regions by addressing cross-image
semantics. Our method ranked 1st place in the weakly-
supervised semantic segmentation track of LID20challenge.
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